
Git_instructions

Topic Command

These instructions are for a Mac, but 99% of this should work on a PC as well.

Download Git from here: http://git-scm.com/

After the installation has completed, don’t expect to see an application that you can click on. Instead,
you’ll interact with the Git application using the terminal

which gitConfirm that you now have git on your computer by opening up the Terminal, and typing ‘which git’ at
the command prompt. This will display the location that Git was installed on your computer

git versionIn some circumstances, you may also be able to check the version of Git installed using ‘git version’

Download and install Git

With the Terminal open, choose ‘File’ and ‘Preferences’

select the ‘Pro’ layout in the left-hand column. Click the ‘default’ button to set this layout as the
default

Set the font to ‘Menio’ size 14 (or choose another font style/size that is comfortable for you)

Choose the ‘Window’ tab and set size to 150 columns by 40 rows

Before using Git, customize the terminal to make it a little more user
friendly

git config --global user.name [your name]Configure git so it knowns your name

git config --global user.email [your email]and also so it knows your email address (same email attached to your GitHub account if you have
one)

git config --global color.ui trueSet-up git to use colored text in the terminal to make commands and outputs more human readable

git config --global format.pretty onelineSet-up git to use a more concise format in the terminal

Configure git (will only need to do this once)

git initUsing the terminal, navigate to a folder (either an existing one or create a new one) and initialize it as
a git repository

Drag and drop a few files into your git repository (‘repo’ for short)

git statusFrom the terminal, check the status of the repo

git add . or git add [filename]stage the file (staging gives you control over exactly which files you want to track version history on)

Always capitalize first letter of the comment. Do not end with a period

Subject must be 50 characters or less

 Don't try to convey what you changed, instead focus on describing why this commit is important

A few good practices when making comments on your commits:

commit the file with a short subject comment included

git commit -m “your subject [leave quote
open, return 2x and keep writing a longer

description, then close the quotes when
done and hit enter]

alternatively, commit the file with a subject comment and a longer description

Make some changes to a file in your git repo, save these changes, then check status, stage and
commit again

Initialize a Git repository, add a document, modify the document,
stage and commit your changes

git loglook at git log. Notice the unique identifier associated with each commit — this is called a ‘SHA’.
Most recent commit shows up at the top.

git log --onelinelook at log again, but with shortened SHA using the '--oneline' option

further refine the log by colorizing the head and master using the '--decorate' option

review your git history

Using Git on your computer

http://git-scm.com/

Topic Command

note the terms 'master' and 'head' -- master refers to the main project line, while head refers to the branch that you are
currently working on. If you are working on the master, or if you have no branches, then head and master are the same.

git log --prettySee your commit history with messages and the full description using the --pretty option

git log --oneline --decorate --graphIf your git history has branches or merges, then you can view this in the log using the '--graph' option

git diffIf you have a file that you've altered and saved the changes, before you stage or commit these
changes you can look at what was changed in that file relative to the last commit

git log -pOnce you've made a commit, you can still see what the differences are between the various versions
of the document using either the 'git log -p' (shows all versions and their changes). This can be a bit
long to scroll through, so you can shorten to only show the most recent 2 versions using 'git log -p -2'.
Alternatively, you can use the '--stat' option to show a shortened summary of the changes at each
commit (number of lines where something was deleted vs added)

git log --statshow more details about changes made at each commit using the '--stat' option

Git allows you to turn back time to any previous version of a document, without overwriting or
destroying your current version. This is done by simply revisiting a previous version using the
'checkout' command. First open the text document you have been making changes to.

git checkout [SHA ID]use the 'git log --oneline' command to see your log history for this document. Copy the SHA
corresponding to one of your previous commits and paste into the checkout command

Briefly look your log history again. Notice that your history only shows the versions before the one
you just checked out. It's as if you turned back time to this version, making it the most current one.

Now look at your document. It should have changed to that previous version right before your eyes.
Don't worry, you haven't deleted anything. All you really did was go back to a previous commit and
pull it out as a 'detached head'. This ominous sounding term simply refers to a temporary 'branch' in
your development tree (more on branches in the next section).

git checkout masterLeave this 'detached head' state and return to your master development branch using the checkout
command again. If you run ‘git branch’ again, you will see that the detached head is gone. This is a
key reason you should never do any work on a detached head, because once you return to the
master, your work will be lost. If you run 'git log' again, you'll see your entire development tree again.

the 'giant undo button'

It's not necessary that you make branches when using git, but you may find it very useful as a way to
explore different development options for a single document.

git branchFirst, take a look at whether you currently have any branches

git checkout -b [name your branch]As you did above, use the checkout command to return to a previous SHA (as a detached head).
While on that head, create a new branch using the checkout command with the -b option. You’ll need
to name this branch when you create it. Your new branch can be thought as analogous to a 'save as'.
Unlike the 'detached head' state described above, this branch is a new structure in your development
tree that represents a totally new direction that you'd like to take the document, away from the theme
of the master.

git branch run 'git branch' again, and now you should see your master as well as the new branch you just made.
Note again that the 'head' node refers to the one on which you are currently working.

Make some changes while on the new branch, stage and commit.

git checkout [branch]switch between branches. Note that when you are on a branch and you look at your log, you will only
see a history of commits from your head branch. Commits are made to branches, not to the whole
tree.

git branch -d [branch name]You can (and should) delete branches that you no longer need using the 'git branch -d' command.
Note that you can’t delete a branch while it’s the head, so move to the master, then delete the branch

Make a branch

up to this point, you have used the core features of Git. Initializing a git repo, making changes to a
document within that repo, staging the changes, and committing these changes to the local database.
While working with git locally is very useful, the full potential is not realized until you begin to work
with remote repos.

git remotegit recognizes remote connections (to other computers or URLs). You can look at any remotes
currently seen by git using the 'git remote' command

git clone git@github.com:[username]/[repo
name]

If you want to make a local repo on your computer from a repo that is housed on a remote, you can
use the 'clone' command. This could be used to download a git repo directly from GitHub. You'll
need to navigate to the specific repo in your webbrowser, and copy the SSH identifier. If you're not

Push local changes to a remote repo (like GitHub)

mailto:git@github.com

Topic Command
the owner of this repo, then you will first want to 'fork' the repo to copy its contents to your GitHub
account.

To interact more with GitHub from the terminal (like we'll do below) you will need to authenticate your
computer so that it can be trusted to make changes to repos stored on GitHub. Follow the instruction
here: https://help.github.com/articles/generating-ssh-keys/

git push origin masterNow that you've authenticated your computer, and you've made some commits on your local repo
copy, you may now want to 'push' these changes up to the remote source so that are synced.

There may be times when you may want to 'push' changes to a repo for which you are not the owner.
In this case, you would make a 'pull request' and then the owner will have a chance to review the
contents of the material you are pushing (i.e. what changes did you make, and why). Then he or she
could choose to accept these changes and pull them to their repository. We'll may actually use this
method as a way for you to hand in assignments toward the end of the course.

https://help.github.com/articles/generating-ssh-keys/

