
Meta-Psychology, 2019, vol 3, MP.2018.892
https://doi.org/10.15626/MP.2018.892
Article type: Original Article
Published under the CC-BY4.0 license

Open data and materials: N/A
Open and reproducible analysis: N/A

Open reviews and editorial process: Yes
Preregistration: N/A

Edited by: Rickard Carlsson
Reviewed by: Nick Brown, Jack Davis, Nicholas A Coles

All supplementary files can be accessed at OSF:
https://doi.org/10.17605/OSF.IO/PS5RU

Computational Reproducibility via Containers
in Psychology

April Clyburne-Sherin
Independent Consultant

Xu Fei
Code Ocean

Seth Ariel Green
Code Ocean

Abstract

Scientific progress relies on the replication and reuse of research. Recent studies suggest, however, that sharing code
and data does not suffice for computational reproducibility —defined as the ability of researchers to reproduce “par-
ticular analysis outcomes from the same data set using the same code and software” (Fidler and Wilcox, 2018). To
date, creating long-term computationally reproducible code has been technically challenging and time-consuming.
This tutorial introduces Code Ocean, a cloud-based computational reproducibility platform that attempts to solve
these problems. It does this by adapting software engineering tools, such as Docker, for easier use by scientists and
scientific audiences. In this article, we first outline arguments for the importance of computational reproducibility,
as well as some reasons why this is a nontrivial problem for researchers. We then provide a step-by-step guide to
getting started with containers in research using Code Ocean. (Disclaimer: the authors all worked for Code Ocean
at the time of this article’s writing.)
Keywords: computational reproduciblity, social psychology, containers, Docker, Code Ocean

Introduction: The need for computational
reproducibility

Stodden (2014) distinguishes between three forms
of reproducibility: statistical, empirical, and computa-
tional. In psychology, statistical reproducibility, encom-
passing transparency about analytic choices and strate-
gies, has received sustained attention (Simmons, Nel-
son, and Simonsohn, 2011; Grange et al., 2018; Gelman
and Loken, 2014; Morey and Lakens, 2016). Likewise,
empirical reproducibility —providing enough informa-
tion about procedures to enable high-fidelity indepen-
dent replication —has been a high-profile issue in light
of work by the Center for Open Science (Collaboration,
2015; Nosek and Lakens, 2014). Computational repro-

ducibility, by contrast, has been less of a focus.
Kitzes (2017) describes a research project as being

“computationally reproducible”1 when “a second inves-
tigator (including you in the future) can recreate the
final reported results of the project, including key quan-
titative findings, tables, and figures, given only a set of
files and written instructions.”2 Computational repro-

1Note that we use the term ‘reproduction’ to refer to recre-
ating given results using given data, and replication to refer to
analyzing new data. This is broadly in line with the definitions
used by, among others, Peng (2011), Claerbout (2011), and
Donoho, Maleki, Rahman, Shahram, and Stodden (2008), but
some disciplines use the terms differently; for an overview, see
Marwick, Rokem, and Staneva (2017) and Barba (2018).

2Fidler and Wilcox (2018) distinguish between two senses

https://doi.org/10.17605/OSF.IO/PS5RU


2

ducibility facilitates the accumulation of knowledge by
enabling researchers to assess the analytic choices, as-
sumptions, and implementations that led to a set of re-
sults; it also enables testing the robustness of methods
to alternate specifications. Hardwicke et al. (2018) call
this form of reproducibility a “minimum level of cred-
ibility” (p. 2). Moreover, as Donoho (2017) argues,
preparing one’s work for reproducible publication pro-
vides “benefits to authors. Working from the beginning
with a plan for sharing code and data leads to higher
quality work, and ensures that authors can access their
own former work, and those of their co-authors, stu-
dents and postdocs” (p. 760). Because computations
are central to modern research in the social sciences,
their reproducibility, or lack thereof, warrants minis-
tration and attention within the broader open science
movement and the scientific community.

Many psychology journals (Lindsay, 2017; Jonas and
Cesario, 2015) address reproducibility through strong
policies on sharing data, code, and materials. The So-
ciety for Personality and Social Psychology’s ‘Task Force
on Publication and Research Practices” (Funder et al.,
2014) advises authors to make “available research ma-
terials necessary” to reproduce statistical results, and
to adhere “to SPSP’s data sharing policy” (p. 3). The
American Psychological Association’s ethics policy (sec-
tion 8.14) asks that “psychologists do not withhold the
data on which their conclusions are based from other
competent professionals who seek to verify the sub-
stantive claims through reanalysis” (Association, 2012).
Many journals in the field require that authors sign off
on this policy (e.g., Cooper, 2013).

The challenge of computational reproducibility

For two reasons, however, such policies do not suffice
for computational reproducibility. First, data and code
that are available “upon request” may turn out to be
unavailable when actually requested (Stodden, Seiler,
and Ma, 2018; Wicherts, Borsboom, Kats, and Mole-
naar, 2006; Vanpaemel, Vermorgen, Deriemaecker, and
Storms, 2015; Wood, Müller, and Brown, 2018). Sec-
ond, code and data that are publicly available do not
necessarily yield the results one sees in the accompany-
ing paper. This is due to a number of technical chal-
lenges. Dependencies —the packages and libraries that
a researcher’s code relies on —change over time, of-
ten in ways that produce errors (Bogart, Kästner, and
Herbsleb, 2015) or change outputs. Software versions
are not always perfectly recorded (Barba, 2016), which
makes reconstruction of the original computational en-
vironment difficult. While there are many useful guides
to best practices for scientific research (Wilson et al.,
2017; Sandve, Nekrutenko, Taylor, and Hovig, 2013),

adopting them is an investment of scarce time and at-
tention. More prosaically, differences between scien-
tists’ machines can be nontrivial, and memory or stor-
age limitations can halt a reproduction effort (Deelman
and Chervenak, 2008).

As a result, publicly available code and data are often
not computationally reproducible. An example comes
from the journal Cognition. Following the journal’s
adoption of a mandatory data sharing policy, Hardwicke
et al. (2018) attempted to reproduce the results of 35
articles for which they had code and data, and were able
to do so, without author assistance, for just 11 papers;
a further 11 were reproducible with author assistance,
and the remaining 13 were not reproducible “despite
author assistance” (p. 3). While the authors are care-
ful to note that these issues do not appear to “seriously
impact” original conclusions, nevertheless, “suboptimal
data curation, unclear analysis specification, and report-
ing errors can impede computational reproducibility”
(p. 3).3

Rates of reproducibility appear similar in other dis-
ciplines. At the Quarterly Journal of Political Science,
editors found that from “September 2012 to Novem-
ber 2015. . . 14 of the 24 empirical papers subject to in-
house review were found to have discrepancies between
the results generated by authors’ own code and those in
their written manuscripts” (Eubank, 2016, p. 273). In
sociology, after working closely with authors, Liu and
Salganik (2019) were able to reproduce the results of
seven of 12 papers for a special issue of the journal So-
cius. In development economics, Wood et al. (2018)
looked at 109 papers and found only 29 to be “push
button replicable” (the authors’ synonym for computa-
tionally reproducible). In general, how much informa-
tion suffices for reproduction becomes clear only when
it is attempted.

Literate programming, a valuable paradigm for doc-
umentation and explanation, does not necessarily ad-
dress these issues. Woodbridge (2017) recounts at-
tempting to identify a sample of Jupyter notebooks
(Kluyver et al., 2016) mentioned in PubMed Cen-
tral, thinking that reproduction “would simply involve

of the term: “direct (reproducing particular analysis out-
comes from the same data set using the same code and soft-
ware)...[and] conceptual (analyzing the same raw data set
with alternative approaches, different models or statistical
frameworks).” This article primarily concerns direct repro-
ducibility.

3The authors also note that “assessments in the “repro-
ducible” category took between 2-4 person hours, and assess-
ments in the “reproducible with author assistance” and “not
fully reproducible, despite author assistance” categories took
between 5-25 person hours” (p. 28).



3

searching the text of each article for a notebook ref-
erence, then downloading and executing it. . . It turned
out that this was hopelessly naive.” Dependencies were
frequently unmentioned and were not always included
with notebooks; troubleshooting language and tool spe-
ci�c issues required expertise and hindered portability;
and notebooks would often “assume the availability of
non-Python software being available on the local sys-
tem,” but such software “may not be freely available.”

In sum, as Silver (2017) notes, lab-built tools

rarely come ready to run. . . Much of the
software requires additional tools and li-
braries, which the user may not have in-
stalled. Even if users can get the software
to work, differences in computational envi-
ronments, such as the installed versions of
the tools it depends on, can subtly alter per-
formance, affecting reproducibility. (p. 173)

A welcome development: containers

Meanwhile, tools designed by engineers engineers
to share code are available, but are often befuddling
to non-specialists. Chamberlain and Schommer (2014)
note that virtual machines “have serious drawbacks,”
including the dif�culty of use “without a high level of
systems administration knowledge” and requiring “a lot
of storage space, which makes them onerous to share”
(p.1).

One major advance for sharing code is container
software. Containers reduce complexity, Silver (2017)
writes, “by packaging the key elements of the compu-
tational environment needed to run the desired soft-
ware. . . into a lightweight, virtual box. . . [T]hey make
the software much easier to use, and the results easier
to reproduce” (p. 174).

Docker

A container platform called Docker is rising in popu-
larity in some academic �elds (Merkel, 2014; Boettiger,
2015). Docker's core virtues include:

1. a rich and growing ecosystem of supporting tools
and environments, such as Rocker (Boettiger and
Eddelbuettel, 2017), a repository of Docker im-
ages4 speci�cally for R users, and BiocImage-
Builder for Bioconductor-based builds (Almugbel
et al., 2017);

2. ease of use, relative to other container and virtual
machine technology;

3. an open-source code base, allowing for adaptation
(Hung, Kristiyanto, Lee, and Yeung, 2016) and in-
tegration with existing academic software (Grün-
ing et al., 2016; Almugbel et al., 2017);

4. relatively lightweight installation, because a
Docker container “does not replicate the full oper-
ating system, only the libraries and binaries of the
application being virtualized” (Chamberlain and
Schommer, 2014); and

5. compatibility with any programming language
that can be installed on Linux.5

Adoption of container technology like Docker in psy-
chology, however, remains scant.6 A few explanations
come to mind. The �rst is simply lack of awareness.
The second is lack of incentives, as journals increas-
ingly require the sharing of code and data but not of
a full-�edged computational environment. The third
is that Docker, though easier to use than many other
software engineering tools, requires familiarity with the
command line and dependency management. These
skills take time and effort to learn, are not part of the
standard curriculum for training researchers (Boettiger,
2015), and are not self-evidently a worthwhile invest-
ment when weighing opportunity costs.

Code Ocean: customizing container technology for
researchers

Code Ocean attempts to address these issues. It is a
platform for creating, running, and collaborating on re-
search code. It allows scientists to package code, data,
results, metadata, and a computational environment
into a single compendium —called a `compute capsule,'7

or simply `capsule' for short —whose results can be re-
produced by anyone who presses a 'Run' button. It does
so by providing a simple-to-use interface for con�guring
computational environments, getting code up and run-
ning online, and publishing �nal results. Each published
capsule is assigned a unique, persistent identi�er in the
form of a digital object identi�er (DOI) and can be em-
bedded either directly into the text of an article or its
landing page. The platform hopes to make code accom-
panying research articles reproducible in perpetuity8 by

4A Docker image is the executable package containing all
necessary prerequisites for a software application to run.

5For a more thorough overview of Docker's capabilities and
scienti�c use cases, see Boettiger (2015).

6A search on 23 April 2019 of http://www.apa.org, for in-
stance for the words “Docker container” yielded zero matches.

7Thank you to Christopher Honey for the term.
8For Code Ocean's preservation plan, see https://help.

codeocean.com/faq/code-oceans-preservation-plan.



4

containing all analyses within stable and portable com-
putational environments.

The remainder of this article will illustrate these fea-
tures by walking through a capsule called “The con-
tact hypothesis re-evaluated: code and data”, available
at https://doi.org/10.24433/CO.4024382.v6 or https:
//codeocean.com/capsule/8235972/tree/v6. This cap-
sule reproduces the results of a July 2018 article pub-
lished in Behavioural Public Policy(Paluck, Green, and
Green, 2018).9 (It may help to open up the capsule in a
new tab or window while reading.)

Reuse without downloading or technical setup

Code Ocean allows reuse without installing anything
locally. Figure 1 shows the default view for this capsule.
Code is in the top left, data are in the bottom left, and a
set of published results are on the right (in the `Repro-
ducibility pane'). Readers can view and edit selected
�les in the center pane. A published capsule's code,
data, and results are open-access; they can be viewed
and downloaded by all, with or without a Code Ocean
account.10 The `Reproducible Run' button reproduces
all results in their entirety. This is possible by dint of
two things: a run script, and a fully con�gured compu-
tational environment.

The `run' script (also called the `master script`), visi-
ble in Figure 1 as the code �le with the �ag icon, is a
script that executes each analysis script in its proper or-
der. Authors can designate different �les as their entry-
points by selecting `Set as File to Run'. All capsules must
have a run script to be published.

Clicking on `environment' will give the user a snap-
shot of the computational environment (Figure 2). This
tab offers a number of common package managers, cus-
tomized for each base environment, and a postInstall
script wherein you can download and install software
that isn't currently available through a package man-
ager, or precisely specify an order of operations (Figure
3). Whenever possible, package versions are labeled
and held static to ensure transparency and long-term
stability of computations. For published capsules, en-
vironments are pre-con�gured by authors and do not
need to be altered by readers to reproduce results.

Con�gured to support research work�ows

Code Ocean offers support for any open-source lan-
guage that can be installed on Linux, and also the pro-
prietary languages Stata and MATLAB (Figure 4). This
particular capsule runs Stata and R code in sequence
(Figure 2). Each language comes with pre-con�gured
base environments for common use cases; readers can
also start from a blank slate, with no scienti�c program-
ming languages installed.

Metadata and preservation

Code Ocean asks authors to provide suf�cient meta-
data on published capsules to facilitate intelligibility. At-
taching rich metadata to a capsule encourages citation
and signals that published code is a �rst-class research
object.

In addition to metadata provided by authors, pub-
lished capsules are automatically provided with a DOI
and citation information (Figure 5). Metadata about an
associated publication establishes a compute capsule as
a `version of record' of code and data to support pub-
lished �ndings.

Cloud Workstations

By default, pressing `Reproducible Run' on Code
Ocean runs the main script from top to bot-
tom. Readers may also wish to run code line
by line (or snippet by snippet) iteratively. Cloud
Workstations support this. Following instructions
provided on https://help.codeocean.com/en/articles/
2366255-cloud-workstations-an-overview, Authors and
readers can currently run Terminal, Jupyter, Jupyter-
Lab, R Shiny, and Rstudio workstations, with more op-
tions planned. This particular capsule has Rstudio pre-
installed and ready to launch (Figure 6).

Exporting capsules for local reproduction

For any capsule readers have access to, including all
public capsules, they can download code, data, meta-
data, and a formula for the computational environment,
as well as instructions on reproducing results locally.
Local reproduction will require some familiarity with
Docker, as well as all applicable software licenses (Fig-
ure 7).

Share or embed a capsule

Finally, Code Ocean lets readers easily share pub-
lished capsules. Capsules can be posted to social media,
or as interactive widgets embedded directly into the text
of articles, websites, or blogs (Figure 8).

9Note that one author (Seth Green) is the author of this
capsule and a co-author of the accompanying BPP article.

10Running code requires an account to prevent abuse of
available computational resources, which include GPUs. Au-
thors who sign up with academic email addresses receive 10
hours of runtime per month and 20 GB of storage by default.
Code Ocean's current policy is to provide authors with any and
all resources they need to publish capsules on the platform.
For more details, see https://codeocean.com/pricing.



5

Figure 1. A capsule contains directories for code, data, and results. Additional sub-directories can be added by
authors. Note: all �gures are available as standalone �les at https://doi.org/10.17605/OSF.IO/S8MZ4.

Figure 2. This capsule requires packages from apt-get,
CRAN, and SSC.

Figure 3. Software can also be added via a custom post-
install script.

Figure 4. When creating a new compute capsule, an
author can select environments with pre-installed lan-
guages and language-speci�c installers, or start from a
blank slate (`Ubuntu Linux'). This �gure displays avail-
able MATLAB environments.

Conclusion: Answering the call to make
reproducibility tools simpler

In the context of discussing Docker, Boettiger (2015)
writes that:




	Introduction: The need for computational reproducibility
	The challenge of computational reproducibility
	A welcome development: containers
	Docker

	Code Ocean: customizing container technology for researchers
	Reuse without downloading or technical setup
	Configured to support research workflows
	Metadata and preservation
	Cloud Workstations
	Exporting capsules for local reproduction
	Share or embed a capsule

	Conclusion: Answering the call to make reproducibility tools simpler
	Open Science Practices
	Author Note
	Author Contributions
	Conflict of Interest
	Funding

