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IntroDuctIon
Applications of the protocol
The RNA-seq platform1,2 addresses a multitude of applications, 
including relative expression analyses, alternative splicing, dis-
covery of novel transcripts and isoforms, RNA editing, allele-
specific expression and the exploration of non-model-organism 
transcriptomes.

Typically, tens of millions of sequences (‘reads’) are generated, 
and these, across several samples, form the starting point of this 
protocol. An initial and fundamental analysis goal is to identify 
genes whose expression level changes between conditions. In the 
simplest case, the aim is to compare expression levels between two 
conditions, e.g., stimulated versus unstimulated or wild type ver-
sus mutant. More complicated experimental designs can include 
additional experimental factors, potentially with multiple levels 
(e.g., multiple mutants, doses of a drug or time points) or may 
need to account for additional covariates (e.g. experimental batch 
or sex) or the pairing of samples (e.g., paired tumor and normal 
tissues from individuals). A crucial component of such an analysis 
is the statistical procedure used to call differentially expressed 
genes. This protocol covers two widely used tools for this task: 
DESeq3 and edgeR4–7, both of which are available as packages of 
the Bioconductor software development project8.

Applications of these methods to biology and biomedicine 
are many. The methods described here are general and can be 
applied to situations in which observations are counts (typically, 
hundreds to tens of thousands of features of interest) and the 
goal is to discover changes in abundance. RNA-seq data are the 
standard use case (e.g., refs. 9,10), but many other differential 
analyses of counts are supported11,12. For RNA-seq data, the strat-
egy taken is to count the number of reads that fall into annotated 
genes and to perform statistical analysis on the table of counts 
to discover quantitative changes in expression levels between 
experimental groups. This counting approach is direct, flexible 

and can be used for many types of count data beyond RNA-seq, 
such as comparative analysis of immunoprecipitated DNA11–14 
(e.g., ChIP-seq, MBD-seq11,12), proteomic spectral counts15 and  
metagenomics data.

Development of the protocol
Figure 1 gives the overall sequence of steps, from read sequences 
to feature counting to the discovery of differentially expressed 
genes, with a concerted emphasis on quality checks throughout. 
After initial checks on sequence quality, reads are mapped to a 
 reference genome with a splice-aware aligner16; up to this point, 
this protocol3,6 is identical to many other pipelines (e.g., TopHat 
and Cufflinks17). From the set of mapped reads and either an 
annotation catalog or an assembled transcriptome, features, 
typically genes or transcripts, are counted and assembled into a 
table (rows for features and columns for samples). The statistical 
methods, which are integral to the differential expression dis-
covery task, operate on a feature count table. Before the statisti-
cal modeling, further quality checks are encouraged to ensure 
that the biological question can be addressed. For example, a plot 
of sample relations can reveal possible batch effects and can be 
used to understand the similarity of replicates and the overall 
relationships between samples. After the statistical analysis of 
differential expression is carried out, a set of genes deemed to 
be differentially expressed or the corresponding statistics can be 
used in downstream interpretive analyses to confirm or generate 
further hypotheses.

Replication levels in designed experiments tend to be modest, 
often not much more than two or three. As a result, there is a 
need for statistical methods that perform well in small-sample 
situations. The low levels of replication rule out, for all practical 
purposes, distribution-free rank or permutation-based methods. 
Thus, for small-to-moderate sample sizes, the strategy used is to 
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rna sequencing (rna-seq) has been rapidly adopted for the profiling of transcriptomes in many areas of biology, including  
studies into gene regulation, development and disease. of particular interest is the discovery of differentially expressed genes 
across different conditions (e.g., tissues, perturbations) while optionally adjusting for other systematic factors that affect the 
data-collection process. there are a number of subtle yet crucial aspects of these analyses, such as read counting, appropriate 
treatment of biological variability, quality control checks and appropriate setup of statistical modeling. several variations have 
been presented in the literature, and there is a need for guidance on current best practices. this protocol presents a state-of- 
the-art computational and statistical rna-seq differential expression analysis workflow largely based on the free open-source  
r language and Bioconductor software and, in particular, on two widely used tools, Deseq and edger. Hands-on time for typical 
small experiments (e.g., 4–10 samples) can be  <1 h, with computation time  <1 d using a standard desktop pc.
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make formal distributional assumptions about the data observed. 
The advantage of parametric assumptions is the ability, through 
the wealth of existing statistical methodology, to make infer-
ences about parameters of interest (i.e., changes in expression). 
For genome-scale count data, including RNA-seq, a convenient 
and well-established approximation is the negative binomial 
(NB) model (Box 1), which represents a natural extension of the 
Poisson model (i.e., a mixture of gamma-distributed rates) that 
was used in early studies18; notably, Poisson variation can only 
describe technical (i.e., sampling) variation.

To analyze differential expression, this protocol focuses on 
DESeq and edgeR, which implement general differential analy-
ses on the basis of the NB model. These tools differ in their look 
and feel, and they estimate the dispersions differently but offer 
overlapping functionality (Box 2).

Variations and extensions of the protocol
This protocol presents a workflow built from a particular set of 
tools, but it is modular and extensible; thus, alternatives that offer 
special features (e.g., counting by allele) or additional flexibility 
(e.g., specialized mapping strategy) can be inserted as necessary. 
Figure 1 highlights straightforward alternative entry points to 
the protocol (orange boxes). The count-based pipeline discussed 
here can be used in concert with other tools. For example, for 
species without an available well-annotated genome reference, 
Trinity19 or other assembly tools can be used to build a reference 
transcriptome; reads can then be aligned and counted, followed 
by the standard pipeline for differential analysis20. Similarly, to 
perform differential analysis on novel genes in otherwise anno-
tated genomes, the protocol could be expanded to include merged 
per-sample assemblies (e.g., Cuffmerge within the Cufflinks pack-
age17,21,22) and used as input to counting tools.

The focus of this protocol is gene-level differential expres-
sion analysis. However, biologists are often interested in analyses 

beyond that scope, and many possibilities now exist as extensions 
of the count-based framework discussed here. The full details of 
such analyses are not covered here, and we make only a sketch of 
some promising approaches. First, an obvious extension to gene-
level counting is exon-level counting, given a catalog of tran-
scripts. Reads can be assigned to the exons that they align to and 
be counted. Reads spanning exon-exon junctions can be counted 
at the junction level. The DEXSeq package uses a generalized lin-
ear model (GLM) that tests whether particular exons in a gene 
are preferentially used in a condition, over and above changes in 
gene-level expression. In edgeR, a similar strategy is taken, except 
that testing is done at the gene level by effectively asking whether 

 Box 1 | The NB model 
The NB model has been shown to be a good fit to RNA-seq data7, yet it is flexible enough to account for biological variability. It provides 
a powerful framework (e.g., via GLMs) for analyzing arbitrarily complex experimental designs. NB models, as applied to genomic count 
data, make the assumption that an observation, say Ygj (observed number of reads for gene g and sample j), has a mean µgj and a  
variance µgj  +  ϕgµ2 , where the dispersion ϕg  >  0 represents overdispersion relative to the Poisson distribution4. The mean  
parameters µgj depend on the sequencing depth for sample j as well as on the amount of RNA from gene g in the sample. Statistical 
procedures can be formulated to test for changes in expression level between experimental conditions, possibly adjusting for batch 
effects or other covariates, and to estimate the log-fold changes in expression.

The dispersion ϕg represents the squared coefficient of variation of the true expression levels between biologically independent RNA 
samples under the same experimental conditions, and hence the square root of ϕg is called the biological coefficient of variation7.

Obtaining good estimates of each gene’s dispersion is critical for reliable statistical testing. Methods of estimating the genewise 
dispersion have received considerable attention3,4,31,59. Unless the number of samples is large, stable estimation of the dispersion 
requires some sort of sharing of information between genes. One can average the variability across all genes5, or fit a global trend to 
the dispersion3, or can seek a more general compromise between individual gene and global dispersion estimators4.
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Figure 1 | Count-based differential expression pipeline for RNA-seq data 
using edgeR and/or DESeq. Many steps are common to both tools, whereas 
the specific commands are different (Step 14). Steps within the edgeR or 
DESeq differential analysis can follow two paths, depending on whether the 
experimental design is simple or complex. Alternative entry points to the 
protocol are shown in orange boxes.
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the exons are used proportionally across experiment conditions 
in the context of biological variation.

Comparison with other methods
Many tools exist for differential expression of counts, with 
slight variations of the method demonstrated in this protocol; 
these include, among others, baySeq23, BBSeq24, NOISeq25 and 
QuasiSeq26. The advantages and disadvantages of each tool are 
difficult to elicit for a given data set, but simulation studies show 
that edgeR and DESeq, despite the influx of many new tools, 
remain among the top performers27.

The count-based RNA-seq analyses presented here consider the 
total output of a locus, without regard to the isoform diversity that 
may be present. This is of course a simplification. In certain situ-
ations, gene-level count-based methods may not recover true dif-
ferential expression when some isoforms of a gene are upregulated 
and others are downregulated17,28. Extensions of the gene-level 
count-based framework to differential exon usage are now avail-
able (e.g., DEXSeq29). Recently, approaches have been proposed to 
estimate transcript-level expression and to build the uncertainty 
of these estimates into a differential analysis at the transcript level 
(e.g., BitSeq30). Isoform deconvolution coupled with differential 
expression (e.g., Cuffdiff17,21,22) is a plausible and popular alterna-
tive, but in general, isoform-specific expression estimation remains 
a difficult problem, especially if sequence reads are short, if genes 
whose isoforms overlap substantially are analyzed or if very deeply 
sequenced data are unavailable. At present, isoform deconvolu-
tion methods and transcript-level differential expression meth-
ods only support two-group comparisons. In contrast, counting 
is straightforward regardless of the configuration, and depth of 
data and arbitrarily complex experiments are naturally supported 
through GLMs (see Box 3 for further details on feature counting). 
Recently, a flexible Bayesian framework for the analysis of ‘random’ 
effects in the context of GLM models and RNA-seq count data was 
made available in the ShrinkSeq package31. In addition, count-
based methods that operate at the exon level, which share the NB 
framework, and flexible coverage–based methods have become 
available to address the limitations of gene-level analyses29,32,33. 
These methods give a direct readout of differential exons, genes 
whose exons are used unequally or nonparallel coverage profiles, 
all of which reflect a change in isoform use.

Scope of this protocol
The aim of this protocol is to provide a concise workflow for 
a standard analysis, in a complete and easily accessible format, 
for users new to the field or to R. We describe a specific but very 

common analysis task: the analysis of an RNA-seq experiment, 
comparing two groups of samples that differ in terms of their 
experimental treatment. We also cover one common complica-
tion: the need to account for a blocking factor.

In practice, users will need to adapt this pipeline to account for 
the circumstances of their experiment. More complicated experi-
mental designs will require further considerations not covered 
here. Therefore, we emphasize that this protocol is not meant to 
replace the existing user guides, vignettes and online documenta-
tion for the packages and functions described. These provide a 
large body of information that is helpful for tackling tasks that go 
beyond the single-standard workflow presented here.

In particular, edgeR and DESeq have extensive user guides, 
downloadable from http://www.bioconductor.org, which cover a 
wide range of relevant topics. Please consult these comprehensive 
resources for further details. Another rich resource for answers 
to commonly asked questions is the Bioconductor mailing list 
(http://bioconductor.org/help/mailing-list/) as well as online 
resources such as seqanswers.com (http://seqanswers.com/), 
stackoverflow.com (http://stackoverflow.com/) and biostars.org 
(http://www.biostars.org/).

Multiple entry points to the protocol
As mentioned, this protocol is modular, in that users can use an 
alternative aligner or a different strategy (or software package) 
to count features. Two notable entry points (see orange boxes in 
Fig. 1) for the protocol include starting with either (i) a set of 
sequence alignment map (SAM)/binary alignment map (BAM) 
files from an alternative alignment algorithm or (ii) a table of 
counts. With SAM/BAM files in hand, users can start at Step 13, 
although it is often invaluable to carry along metadata informa-
tion (Steps 3–6), postprocessing the alignment files may still be 
necessary (Step 9) and spot checks on the mapping are often use-
ful (Steps 10–12). With a count table in hand, users can start at 
Step 14, where again the metadata information (Steps 3–6) will 
be needed for the statistical analysis. For users who wish to learn 
the protocol using the data analyzed here, the Supplementary 
Data gives an archive containing: the intermediate COUNT files 
used, a collated count table (counts) in CSV (comma-separated 
values) format, the metadata table (samples) in CSV format and 
the CSV file that was downloaded from the National Center for 
Biotechnology Information (NCBI)’s short read archive (SRA).

Experimental design
Replication. Some of the early RNA-seq studies were performed 
without biological replication. If the purpose of the experiment 

 Box 2 | Differences between DESeq and edgeR 
The two packages described in this protocol, DESeq and edgeR, have similar strategies to perform differential analysis for count  
data. However, they differ in a few important areas. First, their look and feel differs. For users of the widely used limma package60  
(for analysis of microarray data), the data structures and steps in edgeR follow analogously. The packages differ in their default  
normalization: edgeR uses the trimmed mean of M values56, whereas DESeq uses a relative log expression approach by creating a virtual 
library that every sample is compared against; in practice, the normalization factors are often similar. Perhaps most crucially, the tools 
differ in the choices made to estimate the dispersion. edgeR moderates feature-level dispersion estimates toward a trended mean  
according to the dispersion-mean relationship. In contrast, DESeq takes the maximum of the individual dispersion estimates  
and the dispersion-mean trend. In practice, this means DESeq is less powerful, whereas edgeR is more sensitive to outliers.  
Recent comparison studies have highlighted that no single method dominates another across all settings27,61,62.

http://www.bioconductor.org
http://bioconductor.org/help/mailing-list/
http://seqanswers.com/
http://stackoverflow.com/
http://www.biostars.org/
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is to make a general statement about a biological condition of 
interest (in statistical parlance, a population), for example, the 
effect of treating a certain cell line with a particular drug, then 
an experiment without replication is insufficient. Rapid develop-
ments in sequencing reduce technical variation but cannot pos-
sibly eliminate biological variability34. Technical replicates are 
suited to studying properties of the RNA-seq platform16, but they 
do not provide information about the inherent biological vari-
ability in the system or the reproducibility of the biological result 
(for instance, its robustness to slight variations in cell density, 
passage number, drug concentration or medium composition). 
In other words, experiments without biological replication are 
suited to making a statement regarding one particular sample 
that existed on one particular day in one particular laboratory, 
but not whether anybody could reproduce this result. When no 
replicates are available, experienced analysts may still proceed, 
using one of the following options: (i) by performing a descrip-
tive analysis with no formal hypothesis testing; (ii) by selecting a 
dispersion value on the basis of past experience; or (iii) by using 
housekeeping genes to estimate variability across all samples in 
the experiment.

In this context, it is helpful to remember the distinction between 
designed experiments, in which a well-characterized system  
(e.g., a cell line or a laboratory mouse strain) undergoes a fully 
controlled experimental procedure with minimal unintended 
variation, and observational studies, in which samples are often 
those of convenience (e.g., patients arriving at a clinic) that have 
been subjected to many uncontrolled environmental and genetic 
factors. Replication levels of two or three are often a practical 

compromise between cost and benefit for designed experiments, 
but for observational studies, typically much larger group sizes 
(dozens or hundreds) are needed to reliably detect biologically 
meaningful results.

Confounding factors. In many cases, data are collected over time. 
In this situation, researchers should be mindful of factors that 
may unintentionally confound their results (e.g., batch effects), 
such as changes in reagent chemistry or software versions used 
to process their data35. Users should make a concerted effort 
to reduce confounding effects through experimental design  
(e.g., randomization, blocking36) and to keep track of versions, 
conditions (e.g., operators) of every sample, in the hope that 
these factors (or surrogates of them) can be differentiated from 
the biological factor(s) of interest in the downstream statistical 
modeling. In addition, there are emerging tools available that can 
discover and help eliminate unwanted variation in larger data 
sets37,38, although these are relatively untested for RNA-seq data 
at present.

Software implementation. There are advantages to using a 
small number of software platforms for such a workflow, and 
these include simplified maintenance, training and portability.  
In principle, it is possible to do all computational steps in R and 
Bioconductor; however, for a few of the steps, the most mature 
and widely used tools are outside Bioconductor. Here R and 
Bioconductor are adopted to tie together the workflow and provide 
data structures, and their unique strengths in workflow compo-
nents are leveraged, including statistical algorithms, visualization 

 Box 3 | Feature counting 
In principle, counting reads that map to a catalog of features is straightforward. However, a few subtle decisions need to be made. 
For example, how should reads that fall within intronic regions (i.e., between two known exons) or beyond the annotated regions be 
counted? Ultimately, the answer to this question is guided by the chosen catalog that is presented to the counting software;  
depending on the protocol used, users should be conscious to include all features that are of interest, such as polyadenylated RNAs, 
small RNAs, long intergenic noncoding RNAs and so on. For simplicity and to avoid problems with mismatching chromosome identifiers 
and inconsistent coordinate systems, we recommend using the curated FASTA files and GTF files from Ensembl or the prebuilt indices 
packaged with GTF files from http://tophat.cbcb.umd.edu/igenomes.shtml whenever possible.

Statistical inference based on the NB distribution requires raw read counts as input. This is required to correctly model the Poisson 
component of the sample-to-sample variation. Therefore, it is crucial that units of evidence for expression are counted. No prior  
normalization or other transformation should be applied, including quantities such as RPKM (reads per kilobase model), FPKM  
(fragments per kilobase model) or otherwise depth-adjusted read counts. Both DESeq and edgeR internally keep the raw counts and 
normalization factors separate, as this full information is needed to correctly model the data. Notably, recent methods to normalize 
RNA-seq data for sample-specific G+C content effects use offsets that are presented to the GLM, while maintaining counts on their 
original scale63,64.

Each paired-end read represents a single fragment of sequenced DNA, yet (at least) two entries for the fragment will appear in the 
corresponding BAM files. Some simplistic early methods that operated on BAM files considered these as separate entries, which led to 
overcounting and would ultimately overstate the significance of differential expression.

Typically, there will be reads that cannot be uniquely assigned to a gene, either because the read was aligned to multiple  
locations (multi-reads) or the read’s position is annotated as part of several overlapping features. For the purpose of calling  
differential expression, such reads should be discarded. Otherwise, genuine differential expression of one gene might cause another 
gene to appear differentially expressed, erroneously, if reads from the first gene are counted for the second due to assignment  
ambiguity. In this protocol, we use the tool htseq-count of the Python package HTSeq, using the default union-counting mode;  
more details can be found at http://www-huber.embl.de/users/anders/HTSeq/doc/count.html. In addition, Bioconductor now offers 
various facilities for feature counting, including easyRNASeq in the easyRNASeq package65, the summarizeOverlaps function in the 
GenomicRanges package and qCount in the QuasR (http://www.bioconductor.org/packages/release/bioc/html/QuasR.html) package.

http://tophat.cbcb.umd.edu/igenomes.shtml
http://www-huber.embl.de/users/anders/HTSeq/doc/count.html
http://www.bioconductor.org/packages/release/bioc/html/QuasR.html
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and computation with annotation databases. Another major 
advantage of an R-based system, in terms of achieving best prac-
tices in genomic data analysis, is the opportunity for an interactive 
analysis whereby spot checks are made throughout the pipeline 
to guide the analyst. In addition, a wealth of tools is available 
for exploring, visualizing and cross-referencing genomic data. 
Although they are not used here directly, additional features of 
Bioconductor are readily available that will often be important 
for scientific projects that involve an RNA-seq analysis, includ-
ing access to many different file formats, range-based compu-
tations, annotation resources, manipulation of sequence data  
and visualization.

In what follows, all Unix commands run at the command line 
appear in Courier font, prefaced by a dollar sign ($):

$ my_unix_command

whereas R functions in the text appear as myFunction, and (typed) 
R input commands and output commands appear in bold and 
plain Courier font, respectively:

 > x  =  1:10

 > median(x)

[1] 5.5

Note that in R, the operators  =  and  < - can both be used for 
variable assignment (i.e., z  =  5 and z  < - 5 produce the same 
result, a new variable z with a numeric value). In this protocol, 
we use the  =  notation; in other places, users may also see the  
 < - notation.

Constructing a metadata table (Steps 3–6). In general, we rec-
ommend starting from a sample metadata table that contains 

 Box 4 | Software versions 
The original of this document was produced with Sweave66 using the following versions of R and its packages:
 >  sessionInfo()
R output:

R version 3.0.0 (2013-04-03)

Platform: x86_64-unknown-linux-gnu (64-bit)

locale:

[1] LC_CTYPE = en_CA.UTF-8  LC_NUMERIC = C  LC_TIME = en_CA.UTF-8

[4] LC_COLLATE = en_CA.UTF-8  LC_MONETARY = en_CA.UTF-8  LC_MESSAGES = en_CA.UTF-8

[7] LC_PAPER = C  LC_NAME = C  LC_ADDRESS = C

[10] LC_TELEPHONE = C  LC_MEASUREMENT = en_CA.UTF-8  LC_IDENTIFICATION = C  

attached base packages:

[1] parallel stats graphics grDevices utils datasets methods base  

other attached packages:

[1]  DESeq_1.12.0  locfit_1.5-9.1  Biobase_2.20.0  edgeR_3.2.3

[5]  limma_3.16.2  ShortRead_1.18.0  latticeExtra_0.6-24  RColorBrewer_1.0-5

[9]  Rsamtools_1.12.3  lattice_0.20-15  Biostrings_2.28.0  GenomicRanges_1.12.4

[13] IRanges_1.18.1  BiocGenerics_0.6.0  CacheSweave_0.6-1  stashR_0.3-5

[17] filehash_2.2-1

loaded via a namespace (and not attached):

[1]  annotate_1.38.0  AnnotationDbi_1.22.5  bitops_1.0-5  DBI_0.2-7

[5]  digest_0.6.3  genefilter_1.42.0  geneplotter_1.38.0  grid_3.0.0

[9]  hwriter_1.3  RSQLite_0.11.3  splines_3.0.0  stats4_3.0.0

[13]  survival_2.37-4  tools_3.0.0  XML_3.96-1.1  xtable_1.7-1

[17]  zlibbioc_1.6.0 

The versions of software packages used can be captured with the following commands (output is shown below each command):

 > system("bowtie2 --version | grep align", intern = TRUE)

[1] "/usr/local/software/bowtie2-2.1.0/bowtie2-align version 2.1.0"

 > system("tophat --version", intern = TRUE)

[1] "TopHat v2.0.8"

 > system("htseq-count | grep version", intern = TRUE)

[1] "General Public License v3. Part of the 'HTSeq' framework, version 0.5.3p9."

 > system("samtools 2  > &1 | grep Version", intern = TRUE)

[1] "Version: 0.1.18 (r982:295)"
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sample identifiers, experimental conditions, blocking factors 
and file names. In our example, we construct this table from a 
file downloaded from the SRA. Users will often obtain a similar 
table from a local laboratory information management system 
(LIMS) or sequencing facility and can adapt this strategy to their 
own data sets.

Mapping reads to reference genome (Steps 7 and 8). In the pro-
tocol, R is used to tie the pipeline together (i.e., loop through the 
set of samples and construct the full tophat2 command), with the 
hope of reducing typing and copy-and-paste errors. Many alterna-
tives and variations are possible: users can use R to create and call 
the tophat2 commands, to create the commands (and call tophat2 
independently of a Unix shell), or to assemble the commands 
manually independently of R. tophat2 creates a directory for each  
sample with the mapped reads in a BAM file, called accepted_hits.
bam. Note that BAM files, and equivalently SAM files (an uncom-
pressed text version of BAM), are the de facto standard file for 
alignments. Therefore, alternative mapping tools that produce 
BAM/SAM files could be inserted into the protocol at this point.

Organizing BAM and SAM files (Step 9). The set of files con-
taining mapped reads (from tophat2, accepted_hits.bam) (typi-
cally) needs to be transformed before it can be used with other 
downstream tools. In particular, the samtools command is used 
to prepare variations of the mapped reads. Specifically, a sorted 
and indexed version of the BAM file is created, which can be 
used in genome browsers such as IGV; a sorted-by-name SAM 
file is created, which is compatible with the feature-counting soft-
ware of htseq-count. Alternative feature-counting tools (e.g., in 
Bioconductor) may require different inputs.

Design matrix. For more complex designs (i.e., beyond two-
group comparisons), users need to provide a design matrix that 
specifies the factors that are expected to affect expression levels. As 
mentioned above, GLMs can be used to analyze arbitrarily com-
plex experiments, and the design matrix is the means by which 
the experimental design is described mathematically, including 
both biological factors of interest and other factors not of direct 
interest, such as batch effects. For example, Section 4.5 of the 
edgeR User’s Guide (‘RNA-seq of pathogen inoculated Arabidopsis 
with batch effects’) or Section 4 of the DESeq vignette (‘Multi-
factor designs’) presents worked case studies with batch effects. 
The design matrix is central for such complex differential expres-
sion analyses, and users may wish to consult a linear modeling 
textbook39 or a local statistician to make sure their design matrix 
is appropriately specified.

Reproducible research. We recommend that users keep a record 
of all commands (R and Unix) and the software versions used 
in their analysis so that other researchers (e.g., collaborators, 
reviewers) can reproduce the results (Box 4). In practice, this is 
best achieved by keeping the complete transcript of the compu-
ter commands interweaved with the textual narrative in a sin-
gle, executable document40. R provides many tools to facilitate 
the authoring of executable documents, including the Sweave 
function and the knitR package. The sessionInfo function helps 
with documenting package versions and related information. 
A recent integration with Rstudio is rpubs.com (http://rpubs.
com/), which provides seamless integration of ‘mark-down’ text 
with R commands for easy web-based display. For language-
independent authoring, a powerful tool is provided by Emacs 
org-mode.

MaterIals
EQUIPMENT
 crItIcal For many of the software packages listed below, new features 
and optimizations are constantly developed and released, so we highly  
recommend using the most recent stable version as well as reading the  
(corresponding) documentation for the version used. The package versions 
used in the production of this article are given in Box 4
Operating system

This protocol assumes users have a Unix-like operating system (i.e., Linux 
or MacOS X), with a bash shell or similar. All commands given here are 
meant to be run in a terminal window. Although it is possible to follow 
this protocol with a Microsoft Windows machine (e.g., using the Unix-like 
Cygwin; http://www.cygwin.com/), the additional steps required are not 
discussed here

Software
An aligner to map short reads to a genome that is able to deal with reads 
that straddle introns16. The aligner tophat2 (refs. 21,41) is illustrated  
here, but others, such as GSNAP42, SpliceMap43, Subread44 or STAR45,  
can be used
(Optional) A tool to visualize alignment files, such as the Integrated  
Genome Viewer (IGV46, or Savant47,48). IGV is a Java tool with ‘web  
start’ (downloadable from http://www.broadinstitute.org/software/igv/
log-in), i.e., it can be started from a web browser and needs no  

•

•

•

explicit installation at the operating system level, provided a Java  
Runtime Environment is available
The R statistical computing environment, downloadable from  
http://www.r-project.org/
A number of Bioconductor8 packages, specifically ShortRead49, DESeq3 and 
edgeR6,7, and possibly GenomicRanges, GenomicFeatures and org.Dm.eg.
db, as well as their dependencies
The samtools program50 (http://samtools.sourceforge.net/) for  
manipulation of SAM- and BAM-formatted files
The HTSeq package (http://www-huber.embl.de/users/anders/HTSeq/doc/
overview.html) for counting of mapped reads
(Optional) If users wish to work with data from the SRA, they will need the 
SRA Toolkit (http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=
software&m=software&s=software)

Input file formats
In general, the starting point is a collection of FASTQ files, the commonly 
used format for reads from Illumina sequencing machines. The  
modifications necessary for mapping reads from other platforms are not 
discussed here

Example data
The data set published by Brooks et al.51 is used here to demonstrate the 
workflow. This data set consists of seven RNA-seq samples, each a cell  

•

•

•

•

•

•

•

http://rpubs.com/
http://rpubs.com/
http://www.cygwin.com/
http://www.broadinstitute.org/software/igv/log-in
http://www.broadinstitute.org/software/igv/log-in
http://www.r-project.org/
http://samtools.sourceforge.net/
http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html
http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html
http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=software&m=software&s=software
http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=software&m=software&s=software
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culture of Drosophila melanogaster S2 cells. Three samples were treated  
with siRNA targeting the splicing factor pasilla (CG1844) (‘knockdown’) 
and four samples are untreated (‘control’). Our aim is to identify genes  
that change in expression between knockdown and control. Brooks et al.51 
have sequenced some of their libraries in single-end mode and others in 
paired-end mode. This allows us to demonstrate two variants of the work-
flow: if we ignore the differences in library type, the samples only differ by 
their experimental condition (knockdown or control), and the analysis is a 
simple comparison between two sample groups. We refer to this setting as 
an experiment with a simple design. If we want to account for library type 
as a blocking factor, our samples differ in more than one aspect (i.e., we 
have a complex design). To deal with the latter scenario, we use edgeR and 
DESeq’s functions to fit GLMs.

EQUIPMENT SETUP
Install bowtie2, tophat2 and samtools Download and install samtools from 
http://samtools.sourceforge.net. bowtie2 and tophat2 have binary versions 
available for Linux and Mac OS X platforms. These can be downloaded from 
http://bowtie-bio.sourceforge.net/index.shtml and http://tophat.cbcb.umd.
edu/. Consult the documentation on those sites for further information  
if necessary.
Install R and required Bioconductor packages Download the latest 
release version of R from http://cran.r-project.org/ and install it. Consult 
the R Installation and Administration manual if necessary. A useful quick 
reference for R commands can be found at http://cran.r-project.org/doc/
contrib/Short-refcard.pdf. To install Bioconductor packages, start R by 
issuing the command R in a terminal window and type:

> source("http://www.Bioconductor.org/biocLite.R")

> biocLite("BiocUpgrade")

> biocLite( c("ShortRead","DESeq", "edgeR") )

This retrieves an automatic installation tool (biocLite) and installs the 
 version-matched packages. In addition, the installation tool will auto-
matically download and install all other prerequisite packages. Versions of 
Bioconductor packages are matched to versions of R. Hence, to use current 
versions of Bioconductor packages, it is necessary to use a current version 
of R. Note that R and Bioconductor maintain a stable release version and a 

development version at all times. Unless a special need exists for a particular 
new functionality, users should use the release version.
Download the example data To download SRA repository data, an  
automated process may be desirable. For example, from http://www.ncbi.
nlm.nih.gov/sra?term=SRP001537 (the entire experiment corresponding  
to GEO accession GSE18508), users can download a table of the  
metadata into a comma-separated tabular file ‘SraRunInfo.csv’ (see the 
Supplementary Data, which contains an archive of various files used in this 
protocol). To do this, click on ‘Send to:’ (top right corner), select ‘File’, select 
format ‘RunInfo’ and click on ‘Create File’. Read this CSV file ‘SraRunInfo.
csv’ into R, and select the subset of samples that we are interested in  
(using R’s string matching function grep), corresponding to the 22 SRA  
files shown in Figure 2 by:

> sri = read.csv("SraRunInfo.csv",  
      stringsAsFactors=FALSE)

> keep = grep("CG8144|Untreated-", 
   sri$ LibraryName)

> sri = sri[keep,]

The following R commands automate the download of the 22 SRA files to 
the current working directory (the functions getwd and setwd can be used to 
retrieve and set the working directory, respectively):

> fs = basename(sri$download_path)

> for(i in 1:nrow(sri))

   download.file(sri$download_path[i], fs[i])

 crItIcal This download is only required if data originate from the SRA. 
Brooks et al.51 deposited their data in the SRA of the NCBI’s Gene Expression 
Omnibus (GEO)52 under accession number GSE18508 and a subset of  
this data set is used here to illustrate the pipeline. Specifically, SRA files  
corresponding to the 4 ‘Untreated’ (control) and 3 ‘CG8144 RNAi’  
(knockdown) samples need to be downloaded.
Alternative download tools The R-based download of files described above 
is just one way to capture several files in a semiautomatic fashion. Users can 
alternatively use the batch tools wget (Unix/Linux) or curl (Mac OS X), or 

Figure 2 | Screenshot of Metadata available from SRA.

http://samtools.sourceforge.net
http://bowtie-bio.sourceforge.net/index.shtml
http://tophat.cbcb.umd.edu/
http://tophat.cbcb.umd.edu/
http://cran.r-project.org/
http://cran.r-project.org/doc/contrib/Short-refcard.pdf
http://cran.r-project.org/doc/contrib/Short-refcard.pdf
http://www.ncbi.nlm.nih.gov/sra?term=SRP001537
http://www.ncbi.nlm.nih.gov/sra?term=SRP001537
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE18508
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE18508
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download using a web browser. The (truncated) verbose output of the above 
R download commands looks as follows:

 trying URL 'ftp://ftp-private.ncbi.nlm.nih.
gov/sra/sra-instant/reads/ByRun/sra/SRR/SRR031/
SRR031714/SRR031714.sra'

 ftp data connection made, file length 415554366 
bytes

opened URL

 =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =

downloaded 396.3 Mb

 trying URL 'ftp://ftp-private.ncbi.nlm.nih.
gov/sra/sra-instant/reads/ByRun/sra/SRR/SRR031/
SRR031715/SRR031715.sra'

 ftp data connection made, file length 409390212 
bytes

opened URL

 =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =

downloaded 390.4 Mb

[... truncated ...]

Convert SRA to FASTQ format Typically, sequencing data from a sequenc-
ing facility will come in (compressed) FASTQ format. The SRA, however, 
uses its own, compressed, SRA format. In order to convert the example data 
to FASTQ, use the fastq-dump command from the SRA Toolkit on each SRA 
file. Note that the use of R’s system command is just one possibility. Users 
may choose to type the 22 fastq-dump commands manually into the Unix 
shell rather than using R to construct them. R can be used to construct the 
required shell commands, starting from the ‘SraRunInfo.csv’ metadata table, 
as follows:

 >   stopifnot( all(file.exists(fs)) ) # assure FTP 
download was successful

 >  for(f in fs) {

 cmd  =  paste("fastq-dump --split-3", f)

 cat(cmd,"\n")

 system(cmd) # invoke command

}

Using the cat command It is not absolutely necessary to use cat to print out 
the current command, but it serves the purpose of knowing what is currently 
running in the shell:

fastq-dump --split-3 SRR031714.sra

Written 5327425 spots for SRR031714.sra

Written 5327425 spots total

fastq-dump --split-3 SRR031715.sra

Written 5248396 spots for SRR031715.sra

Written 5248396 spots total

[... truncated ...]

 crItIcal Be sure to use the --split-3 option, which splits mate-pair reads 
into separate files. After this command, single and paired-end data will 
produce one and two FASTQ files, respectively. For paired-end data, the file 
names will be suffixed _1.FASTQ and _2.FASTQ; otherwise, a single file with 
the extension .FASTQ will be produced.

Download the reference genome Download the reference genome  
sequence for the organism under study in (compressed) FASTA format. 
Some useful resources, among others, include: the general Ensembl FTP 
server (http://www.ensembl.org/info/data/ftp/index.html), the Ensembl 
plants FTP server (http://plants.ensembl.org/info/data/ftp/index.html),  
the Ensembl metazoa FTP server (http://metazoa.ensembl.org/info/data/
ftp/index.html) and the University of California Santa Cruz (UCSC)  
current genomes FTP server (ftp://hgdownload.cse.ucsc.edu/goldenPath/
currentGenomes/).
Using Ensembl For Ensembl, choose the ‘FASTA (DNA)’ link instead of 
‘FASTA (cDNA)’, as alignments to the genome, not the transcriptome, are 
desired. For D. melanogaster, the file labeled ‘toplevel’ combines all  
chromosomes. Do not use the ‘repeat-masked’ files (indicated by ‘rm’ in the 
file name), as handling repeat regions should be left to the alignment  
algorithm. The Drosophila reference genome can be downloaded from  
Ensembl and uncompressed using the following Unix commands:

$ wget ftp://ftp.ensembl.org/pub/release-70/ 
fasta/drosophila_melanogaster/dna/Drosophila_ 
melanogaster.BDGP5.70.dna.toplevel.fa.gz 

$ gunzip Drosophila_melanogaster.BDGP5.70.dna.
toplevel.fa.gz 

For genomes provided by UCSC, users can select their genome of interest, 
proceed to the ‘bigZips’ directory and download the ‘chromFa.tar.gz’; as 
above, this could be done using the wget command. Note that bowtie2 and 
tophat2 indices for many commonly used reference genomes can be  
downloaded directly from http://tophat.cbcb.umd.edu/igenomes.shtml.
Get gene model annotations Download a gene transfer format (GTF) 
file with gene models for the organism of interest. For species covered by 
Ensembl, the Ensembl FTP site mentioned above contains links to such files. 
The gene model annotation for D. melanogaster can be downloaded and 
uncompressed using:

$ wget ftp://ftp.ensembl.org/pub/release-70/gtf/
drosophila_melanogaster/Drosophila_melanogaster.
BDGP5.70.gtf.gz 

$ gunzip Drosophila_melanogaster.BDGP5.70.gtf.gz 

 crItIcal Make sure that the gene annotation uses the same coordinate 
system as the reference FASTA file. Here, both files use BDGP5 (i.e., release 
5 of the assembly provided by the Berkeley Drosophila Genome Project), as 
is apparent from the file names. To be on the safe side, here, we recommend 
always downloading the FASTA reference sequence and the GTF annotation 
data from the same resource provider.  
 crItIcal As an alternative, the UCSC Table Browser (http://genome.ucsc.
edu/cgi-bin/hgTables) can be used to generate GTF files on the basis of a 
selected annotation (e.g., RefSeq genes). However, at the time of writing, GTF 
files obtained from the UCSC Table Browser do not contain correct gene IDs, 
which can cause problems with downstream tools such as htseq-count, unless 
they are corrected manually.
Build the reference index Before reads can be aligned, the reference FASTA 
files need to be preprocessed into an index that allows the aligner easy access. 
To build a bowtie2-specific index from the FASTA file mentioned above,  
use the command:

$ bowtie2-build -f Drosophila_melanogaster.
BDGP5.70.dna.toplevel.fa Dme1_BDGP5_70

A set of BT2 files will be produced, with names starting with Dme1_
BDGP_70 specified above. This procedure needs to be run only once for 
each reference genome used. As mentioned, pre-built indices for many 
commonly used genomes are available from http://tophat.cbcb.umd.
edu/igenomes.shtml.

http://www.ensembl.org/info/data/ftp/index.html
http://plants.ensembl.org/info/data/ftp/index.html
http://metazoa.ensembl.org/info/data/ftp/index.html
http://metazoa.ensembl.org/info/data/ftp/index.html
ftp://hgdownload.cse.ucsc.edu/goldenPath/currentGenomes/
ftp://hgdownload.cse.ucsc.edu/goldenPath/currentGenomes/
http://tophat.cbcb.umd.edu/igenomes.shtml
http://genome.ucsc.edu/cgi-bin/hgTables
http://genome.ucsc.edu/cgi-bin/hgTables
http://tophat.cbcb.umd.edu/igenomes.shtml
http://tophat.cbcb.umd.edu/igenomes.shtml
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proceDure
assess sequence quality control with shortread ● tIMInG ~2 h
1| At the R prompt, type the commands (you may first need to use setwd to set the working directory to where the FASTQ 
files are situated):

 >  library("ShortRead")

 >  fqQC  =  qa(dirPath = ".", pattern = ".fastq$", type = "fastq")

 >  report(fqQC, type = "html", dest = "fastqQAreport")

? trouBlesHootInG

2| Use a web browser to inspect the generated HTML file (here, stored in the ‘fastqQAreport’ directory) with the  
quality-assessment report (see ANTICIPATED RESULTS for further details)

collect metadata of experimental design ● tIMInG  <1 h
3| Create a table of metadata called ‘samples’ (see ‘Constructing metadata table’ in Experimental Design). This step needs 
to be adapted for each data set, and many users may find a spreadsheet program useful for this step, from which data can 
be imported into the table samples by the read.csv function. For our example data, we chose to construct the samples table 
programmatically from the table of SRA files.

4| Collapse the initial table (sri) to one row per sample:

 >  sri$LibraryName  =  gsub("S2_DRSC_","",sri$LibraryName) # trim label

 >  samples  =  unique(sri[,c("LibraryName","LibraryLayout")])

 >  for(i in seq_len(nrow(samples))) {

 rw  =  (sri$LibraryName =  = samples$LibraryName[i])

 if(samples$LibraryLayout[i] =  = "PAIRED") {

  samples$fastq1[i]  =  paste0(sri$Run[rw],"_1.fastq",collapse = ",")

  samples$fastq2[i]  =  paste0(sri$Run[rw],"_2.fastq",collapse = ",")

  } else {

  samples$fastq1[i]  =  paste0(sri$Run[rw],".fastq",collapse = ",")

  samples$fastq2[i]  =  ""

  }

 }

5| Add important or descriptive columns to the metadata table (experimental groupings are set on the basis of the  
‘LibraryName’ column, and a label is created for plotting):

 >  samples$condition  =  "CTL"

 >  samples$condition[grep("RNAi",samples$LibraryName)]  =  "KD"

 >  samples$shortname  =  paste(substr(samples$condition,1,2),

                 substr(samples$LibraryLayout,1,2),

                 seq _len(nrow(samples)), sep = ".")

6| As the downstream statistical analysis of differential expression relies on this table, carefully inspect (and correct, if 
necessary) the metadata table. In particular, verify that there exists one row per sample, that all columns of information are 
populated and that the file names, labels and experimental conditions are correct.

 >  samples
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R output:

LibraryName Library 
Layout

fastq1 fastq2 condition shortname

1 Untreated-3 PAIRED SRR031714_1.fastq,... SRR031714_2.fastq,... CTL CT.PA.1

2 Untreated-4 PAIRED SRR031716_1.fastq,... SRR031716_2.fastq,... CTL CT.PA.2

3 CG8144_RNAi-3 PAIRED SRR031724_1.fastq,... SRR031724_2.fastq,... KD KD.PA.3

4 CG8144_RNAi-4 PAIRED SRR031726_1.fastq,... SRR031726_2.fastq,... KD KD.PA.4

5 Untreated-1 SINGLE SRR031708.fastq,... CTL CT.SI.5

6 CG8144_RNAi-1 SINGLE SRR031718.fastq,... KD KD.SI.6

7 Untreated-6 SINGLE SRR031728.fastq,... CTL CT.SI.7

align the reads (using tophat2) to the reference genome ● tIMInG ~45 min per sample
7| By using R string manipulation, construct the Unix commands to call tophat2. Given the metadata table samples,  
it is convenient to use R to create the list of shell commands, as follows:

 >  gf  =  "Drosophila_melanogaster.BDGP5.70.gtf"

 >  bowind  =  "Dme1_BDGP5_70"

 >  cmd  =  with(samples, paste("tophat2 -G", gf, "-p 5 -o",  
          LibraryName, bowind, fastq1, fastq2))

 >  cmd

R output:

tophat2 -G Drosophila_melanogaster.BDGP5.70.gtf -p 5 -o Untreated-3 Dme1_BDGP5_70 \ 
SRR031714_1.fastq,SRR031715_1.fastq SRR031714_2.fastq,SRR031715_2.fastq

tophat2 -G Drosophila_melanogaster.BDGP5.70.gtf -p 5 -o Untreated-4 Dme1_BDGP5_70 \ 
SRR031716_1.fastq,SRR031717_1.fastq SRR031716_2.fastq,SRR031717_2.fastq

tophat2 -G Drosophila_melanogaster.BDGP5.70.gtf -p 5 -o CG8144_RNAi-3 Dme1_BDGP5_70 \ 
SRR031724_1.fastq,SRR031725_1.fastq SRR031724_2.fastq,SRR031725_2.fastq

tophat2 -G Drosophila_melanogaster.BDGP5.70.gtf -p 5 -o CG8144_RNAi-4 Dme1_BDGP5_70 \ 
SRR031726_1.fastq,SRR031727_1.fastq SRR031726_2.fastq,SRR031727_2.fastq

tophat2 -G Drosophila_melanogaster.BDGP5.70.gtf -p 5 -o Untreated-1 Dme1_BDGP5_70 \  
SRR031708.fastq,SRR031709.fastq,SRR031710.fastq,SRR031711.fastq,SRR031712.fastq, 
SRR031713.fastq

tophat2 -G Drosophila_melanogaster.BDGP5.70.gtf -p 5 -o CG8144_RNAi-1 Dme1_BDGP5_70 \  
SRR031718.fastq,SRR031719.fastq,SRR031720.fastq,SRR031721.fastq,SRR031722.fastq, 
SRR031723.fastq

tophat2 -G Drosophila_melanogaster.BDGP5.70.gtf -p 5 -o Untreated-6 Dme1_BDGP5_70 \ 
SRR031728.fastq,SRR031729.fastq

 crItIcal step In the call to tophat2, the option -G points tophat2 to a GTF file of annotation to facilitate mapping reads 
across exon-exon junctions (some of which can be found de novo), -o specifies the output directory, -p specifies the number 
of threads to use (this may affect run times and can vary depending on the resources available). Other parameters can be 
specified here, as needed; see the appropriate documentation for the tool and version you are using. The first argument, 
Dmel_BDGP5_70 is the name of the index (built in advance), and the second argument is a list of all FASTQ files with reads 
for the sample. Note that the FASTQ files are concatenated with commas, without spaces. For experiments with paired-end 
reads, pairs of FASTQ files are given as separate arguments and the order in both arguments must match.
? trouBlesHootInG

8| Run these commands (i.e., copy and paste) in a Unix terminal.
 crItIcal step Many similar possibilities exist for this step (see ‘Experimental design’ for further details). Users can use 
the R function system to execute these commands direct from R, cut-and-paste the commands into a separate Unix shell or 
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store the list of commands in a text file and use the Unix ‘source’ command. In addition, users could construct the Unix  
commands independently of R.
? trouBlesHootInG

organize, sort and index the BaM files and create saM files ● tIMInG ~1 h
9| Organize the BAM files into a single directory, sort and index them and create SAM files by running the following  
R-generated commands:

 >  for(i in seq_len(nrow(samples))) { 

 lib  =  samples$LibraryName[i]

 ob  =  file.path(lib, "accepted_hits.bam")

 # sort by name, convert to SAM for htseq-count

 cat(paste0("samtools sort -n ",ob," ",lib,"_sn"),"\n")

 cat(paste0("samtools view -o ",lib,"_sn.sam ",lib,"_sn.bam"),"\n")

 # sort by position and index for IGV

 cat(paste0("samtools sort ",ob," ",lib,"_s"),"\n")

 cat(paste0("samtools index ",lib,"_s.bam"),"\n\n")

}

R output:

samtools sort -n Untreated-3/accepted_hits.bam Untreated-3_sn

samtools view -o Untreated-3_sn.sam Untreated-3_sn.bam

samtools sort Untreated-3/accepted_hits.bam Untreated-3_s

samtools index Untreated-3_s.bam

samtools sort -n Untreated-4/accepted_hits.bam Untreated-4_sn

samtools view -o Untreated-4_sn.sam Untreated-4_sn.bam

samtools sort Untreated-4/accepted_hits.bam Untreated-4_s

samtools index Untreated-4_s.bam

samtools sort -n CG8144_RNAi-3/accepted_hits.bam CG8144_RNAi-3_sn

samtools view -o CG8144_RNAi-3_sn.sam CG8144_RNAi-3_sn.bam

samtools sort CG8144_RNAi-3/accepted_hits.bam CG8144_RNAi-3_s

samtools index CG8144_RNAi-3_s.bam

samtools sort -n CG8144_RNAi-4/accepted_hits.bam CG8144_RNAi-4_sn

samtools view -o CG8144_RNAi-4_sn.sam CG8144_RNAi-4_sn.bam

samtools sort CG8144_RNAi-4/accepted_hits.bam CG8144_RNAi-4_s

samtools index CG8144_RNAi-4_s.bam

samtools sort -n Untreated-1/accepted_hits.bam Untreated-1_sn

samtools view -o Untreated-1_sn.sam Untreated-1_sn.bam

samtools sort Untreated-1/accepted_hits.bam Untreated-1_s

samtools index Untreated-1_s.bam

samtools sort -n CG8144_RNAi-1/accepted_hits.bam CG8144_RNAi-1_sn

samtools view -o CG8144_RNAi-1_sn.sam CG8144_RNAi-1_sn.bam

samtools sort CG8144_RNAi-1/accepted_hits.bam CG8144_RNAi-1_s

samtools index CG8144_RNAi-1_s.bam
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samtools sort -n Untreated-6/accepted_hits.bam Untreated-6_sn

samtools view -o Untreated-6_sn.sam Untreated-6_sn.bam

samtools sort Untreated-6/accepted_hits.bam Untreated-6_s

samtools index Untreated-6_s.bam

 crItIcal step Users should be conscious of the disk space that may get used in these operations. In the command above, 
sorted-by-name SAM and BAM files (for htseq-count), as well as a sorted-by-chromosome-position BAM file (for IGV), are  
created for each original accepted hits.bam file. User may wish to delete (some of) these intermediate files after the steps below.

Inspect alignments with IGV ● tIMInG  <20 min
10| Start IGV, select the D. melanogaster (dm3) genome, and then load the BAM files (with s in the filename) as well as the 
GTF file.

11| Zoom in on an expressed transcript until individual reads are shown and check whether the reads align at and across 
exon-exon junctions, as expected, given the annotation (Fig. 3).

12| If any positive and negative controls are known for the system under study (e.g., known differential expression), direct 
the IGV browser to these regions to confirm that the relative read density is different according to expectation.

count reads using htseq-count ● tIMInG ~3 h 
13| Add the names of the COUNT files to the metadata table and call HTSeq from the following R-generated Unix commands:

 >  samples$countf  =  paste(samples$LibraryName, "count", sep = ".")

 >  gf  =  "Drosophila_melanogaster.BDGP5.70.gtf"

 >  cmd  =  paste0("htseq-count -s no -a 10 ", samples$LibraryName,  
     "_sn.sam ", gf," > ", samples$countf)

 >  cmd

R output:

htseq-count -s no -a 10 Untreated-3_sn.sam \

Drosophila_melanogaster.BDGP5.70.gtf  >  Untreated-3.count

S2_DRSC_CG8144_RNAi-1.bam
ge

S2_DRSC_CG8144_RNAi-1.bam

Sequence

Gene
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chr2R
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T
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Figure 3 | Screenshot of reads aligning across exon junctions.



©
20

13
 N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

protocol

nature protocols | VOL.8 NO.9 | 2013 | 1777

htseq-count -s no -a 10 Untreated-4_sn.sam \

Drosophila_melanogaster.BDGP5.70.gtf  >  Untreated-4.count

htseq-count -s no -a 10 CG8144_RNAi-3_sn.sam \

Drosophila_melanogaster.BDGP5.70.gtf  >  CG8144_RNAi-3.count

htseq-count -s no -a 10 CG8144_RNAi-4_sn.sam \

Drosophila_melanogaster.BDGP5.70.gtf  >  CG8144_RNAi-4.count

htseq-count -s no -a 10 Untreated-1_sn.sam \

Drosophila_melanogaster.BDGP5.70.gtf  >  Untreated-1.count

htseq-count -s no -a 10 CG8144_RNAi-1_sn.sam \

Drosophila_melanogaster.BDGP5.70.gtf  >  CG8144_RNAi-1.count

htseq-count -s no -a 10 Untreated-6_sn.sam \

Drosophila_melanogaster.BDGP5.70.gtf  >  Untreated-6.count

 crItIcal step The option -s signifies that the data are not from a stranded protocol (this may vary by experiment) and 
the -a option specifies a minimum score for the alignment quality.
? trouBlesHootInG

14| For differential expression analysis with edgeR, follow option A for simple designs and option B for complex designs;  
for differential expression analysis with DESeq, follow option C for simple designs and option D for complex designs.
(a) edger—simple design
 (i)  Load the edgeR package and use the utility function, readDGE, to read in the COUNT files created from htseq-count:

 >  library("edgeR")

 >  counts  =  readDGE(samples$countf)$counts

? trouBlesHootInG

 (ii)  Filter weakly expressed and noninformative (e.g., non-aligned) features using a command like:

 >  noint  =  rownames(counts) %in%

   c("no_feature","ambiguous","too_low_aQual",

     "not_aligned","alignment_not_unique")

 >  cpms  =  cpm(counts)

 >  keep  =  rowSums(cpms  > 1)  >  = 3 & !noint

 >  counts  =  counts[keep,]

 crItIcal step In edgeR, it is recommended to remove features without at least 1 read per million in n of the  
samples, where n is the size of the smallest group of replicates (here, n  =  3 for the knockdown group).

 (iii) Visualize and inspect the count table as follows:

 >  colnames(counts)  =  samples$shortname

 >  head( counts[,order(samples$condition)], 5 )

R output:

  CT.PA.1  CT.PA.2  CT.SI.5  CT.SI.7  KD.PA.3  KD.PA.4  KD.SI.6

FBgn0000008  76  71  137  82  87  68  115

FBgn0000017  3498  3087  7014  3926  3029  3264  4322

FBgn0000018  240  306  613  485  288  307  528

FBgn0000032  611  672  1479  1351  694  757  1361

FBgn0000042  40048  49144  97565  99372  70574  72850  95760
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 (iv)  Create a DGEList object (edgeR’s container for RNA-seq count data), as follows:

 >  d  =  DGEList(counts = counts, group = samples$condition)

 (v) Estimate normalization factors using:

 >  d  =  calcNormFactors(d)

 (vi) Inspect the relationships between samples using a multidimensional scaling (MDS) plot, as shown in Figure 4:

 >  plotMDS(d, labels = samples$shortname,  
      col = c("darkgreen","blue")[factor(samples$condition)])

 (vii) Estimate tagwise dispersion (simple design) using:

 >  d  =  estimateCommonDisp(d)

 >  d  =  estimateTagwiseDisp(d)

 (viii)  Create a visual representation of the mean-variance relationship using the plotMeanVar (Fig. 5a) and plotBCV (Fig. 5b) 
functions, as follows:

 >  plotMeanVar(d, show.tagwise.vars = TRUE, NBline = TRUE)

 >  plotBCV(d)

 (ix) Test for differential expression (‘classic’ edgeR), as follows:

 >  de  =  exactTest(d, pair = c("CTL","KD"))

 (x) Follow Step 14B(vi–ix).

(B) edger—complex design
 (i) Follow Step 14A(i–vi).
 (ii)  Create a design matrix (see ‘Experimental design’ for further details) to specify the factors that are expected to affect 

expression levels:

 >  design  =  model.matrix( ~ LibraryLayout  +  condition, samples)

 >  design

R output:

a b
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Figure 4 | Plots of sample relations. (a) By using a count-specific distance measure, edgeR’s plotMDS produces a multidimensional scaling plot showing the 
relationship between all pairs of samples. (b) DESeq’s plotPCA makes a principal component (PC) plot of VST (variance-stabilizing transformation)-transformed 
count data. CT or CTL, control; KD, knockdown.
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  (Intercept)  LibraryLayoutSINGLE  conditionKD

1  1  0  0

2  1  0  0

3  1  0  1

4  1  0  1

5  1  1  0

6  1  1  1

7  1  1  0

attr(,"assign")

[1] 0 1 2

attr(,"contrasts")

attr(,"contrasts")$LibraryLayout

[1] "contr.treatment"

attr(,"contrasts")$condition

[1] "contr.treatment"

 (iii) Estimate dispersion values, relative to the design matrix, using the Cox-Reid (CR)-adjusted likelihood7,53, as follows:

 >  d2  =  estimateGLMTrendedDisp(d, design)

 >  d2  =  estimateGLMTagwiseDisp(d2, design)

 (iv) Given the design matrix and dispersion estimates, fit a GLM to each feature:

 >  f  =  glmFit(d2, design)

 (v)  Perform a likelihood ratio test, specifying the difference of interest (here, knockdown versus control, which  
corresponds to the third column of the above design matrix):

 >  de  =  glmLRT(f, coef = 3)

 (vi)  Use the topTags function to present a tabular summary of the differential expression statistics (note that topTags  
operates on the output of exactTest or glmLRT, but only the latter is shown here):

 >  tt  =  topTags(de, n = nrow(d))

 >  head(tt$table)

R output:

  logFC  logCPM  LR  PValue  FDR

FBgn0039155  -4.61  5.87  902  3.96e-198  2.85e-194

FBgn0025111  2.87  6.86  641  2.17e-141  7.81e-138

FBgn0039827  -4.05  4.40  457  2.11e-101  5.07e-98

FBgn0035085  -2.58  5.59  408  9.31e-91  1.68e-87

FBgn0000071  2.65  4.73  365  2.46e-81  3.54e-78

FBgn0003360  -3.12  8.42  359  3.62e-80  4.34e-77

Figure 5 | Plots of mean-variance relationship 
and dispersion. (a) edgeR’s plotMeanVar can be 
used to explore the mean-variance relationship; 
each dot represents the estimated mean and 
variance for each gene, with binned variances  
as well as the trended common dispersion 
overlaid. (b) edgeR’s plotBCV illustrates the 
relationship of biological coefficient of variation 
versus mean log CPM. (c) DESeq’s plotDispEsts 
shows the fit of dispersion versus mean. CPM, 
counts per million.
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 (vii) Inspect the depth-adjusted reads per million for some of the top differentially expressed genes:

 >  nc  =  cpm(d, normalized.lib.sizes = TRUE)

 >  rn  =  rownames(tt$table)

 >  head(nc[rn,order(samples$condition)],5)

R output:

  CT.PA.1  CT.PA.2 CT.SI.5  CT.SI.7 KD.PA.3  KD.PA.4  KD.SI.6

FBgn0039155  91.07  98.0  100.75  106.78  3.73  4.96  3.52

FBgn0025111  34.24  31.6  26.64  28.46  247.43  254.28  188.39

FBgn0039827  39.40  36.7  30.09  34.47  1.66  2.77  2.01

FBgn0035085  78.06  81.4  63.59  74.08  13.49  14.13  10.99

FBgn0000071  9.08  9.2  7.48  5.85  52.08  55.93  45.65

 (viii)  Create a graphical summary, such as an M (log-fold change) versus A (log-average expression) plot54, here showing the 
genes selected as differentially expressed (with a 5% false discovery rate; Fig. 6):

 >  deg  =  rn[tt$table$FDR  <  .05]

 >  plotSmear(d, de.tags = deg)

 (ix) Save the result table as a CSV file (alternative formats are possible) as follows:

 >  write.csv(tt$table, file = "toptags_edgeR.csv")

(c) Deseq—simple design
 (i)  Create a data.frame with the required metadata, i.e., the names of the count files and experimental conditions. Here 

we derive it from the samples table created in Step 3.

 >  samplesDESeq  =  with(samples,  
       data.frame(shortname  =  I(shortname), countf  =  I(countf),

 condition   =  condition,

 LibraryLayout  =  LibraryLayout))

 (ii)  Load the DESeq package and create a CountDataSet object (DESeq’s container for RNA-seq data) from the count tables 
and corresponding metadata:

 >  library("DESeq")

 >  cds  =  newCountDataSetFromHTSeqCount(samplesDESeq)

? trouBlesHootInG

 (iii) Estimate normalization factors using:

 >  cds  =  estimateSizeFactors(cds)

 (iv) Inspect the size factors using:

 >  sizeFactors(cds)

Figure 6 | M (‘minus’) versus A (‘add’) plots for RNA-seq data. (a) edgeR’s 
plotSmear function plots the log-fold change (i.e., the log ratio of 
normalized expression levels between two experimental conditions) against 
the log counts per million (CPM). (b) Similarly, DESeq’s plotMA displays 
differential expression (log-fold changes) versus expression strength  
(log average read count).
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R output:

CT.PA.1 CT.PA.2 KD.PA.3 KD.PA.4 CT.SI.5 KD.SI.6 CT.SI.7

  0.699    0.811    0.822    0.894    1.643    1.372    1.104

 (v)  To inspect sample relationships, invoke a variance-stabilizing transformation and inspect a principal component  
analysis (PCA) plot (Fig. 4b):

 >  cdsB  =  estimateDispersions(cds, method = "blind")

 >  vsd  =  varianceStabilizingTransformation(cdsB)

 >  p  =  plotPCA(vsd, intgroup = c("condition","LibraryLayout"))

 (vi) Use estimateDispersions to calculate dispersion values:

 >  cds  =  estimateDispersions(cds)

 (vii) Inspect the estimated dispersions using the plotDispEsts function (Fig. 5c), as follows:

 >  plotDispEsts(cds)

 (viii) Perform the test for differential expression by using nbinomTest, as follows:

 >  res  =  nbinomTest(cds,"CTL","KD")

 (ix)  Given the table of differential expression results, use plotMA to display differential expression (log-fold changes)  
versus expression strength (log-average read count), as follows (Fig. 6b):

 >  plotMA(res)

 (x)  Inspect the result tables of significantly upregulated and downregulated genes, at a 10% false discovery rate (FDR)  
as follows:

 >  resSig  =  res[which(res$padj  <  0.1),]

 >  head( resSig[ order(resSig$log2FoldChange, decreasing = TRUE), ] )

R output:

  id  baseMean  baseMeanA baseMeanB foldChange log2FoldChange pval  padj

1515  FBgn0013696  1.46  0.000  3.40  Inf  Inf  4.32e-03  6.86e-02

13260 FBgn0085822  1.93  0.152  4.29  28.2  4.82  4.54e-03  7.11e-02

13265 FBgn0085827  8.70  0.913  19.08  20.9  4.39  1.02e-09  9.57e-08

15470 FBgn0264344  3.59  0.531  7.68  14.5  3.86  4.55e-04  1.10e-02

8153  FBgn0037191  4.43  0.715  9.39  13.1  3.71  5.35e-05  1.78e-03

1507  FBgn0013688  23.82  4.230  49.95  11.8  3.56  3.91e-21  1.38e-18

 >  head( resSig[ order(resSig$log2FoldChange, decreasing = FALSE), ] )

R output:

  id  baseMean baseMeanA  baseMeanB foldChange log2FoldChange pval  padj

13045 FBgn0085359  60.0  102.2  3.78  0.0370  -4.76  7.65e-30  4.88e-27

9499  FBgn0039155  684.1  1161.5  47.59  0.0410  -4.61  3.05e-152 3.88e-148

2226  FBgn0024288  52.6  88.9  4.25  0.0478  -4.39  2.95e-32  2.09e-29

9967  FBgn0039827  246.2  412.0  25.08  0.0609  -4.04  1.95e-82  8.28e-79

6279  FBgn0034434  104.5  171.8  14.72  0.0856  -3.55  8.85e-42  9.40e-39

6494  FBgn0034736  203.9  334.9  29.38  0.0877  -3.51  6.00e-41  5.88e-38
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 (xi)  Count the number of genes with significant  
differential expression at a FDR of 10%:

 >  table( res$padj  <  0.1 )

R output:

FALSE    TRUE

11861    885

 (xii) Create a persistent storage of results using, for exam-
ple, a CSV file:

 >  write.csv(res, file = "res_DESeq.csv")

 (xiii)  Perform a sanity check by inspecting a histogram of unadjusted P values (Fig. 7) for the differential expression results, 
as follows:

 >  hist(res$pval, breaks = 100)

(D) Deseq—complex design
 (i) Follow Step 14C(i–v).
 (ii)  Calculate the CR-adjusted profile likelihood53 dispersion estimates relative to the factors specified, developed by  

McCarthy et al.7, according to:

 >  cds  =  estimateDispersions(cds, method  =  "pooled-CR",

            modelFormula  =  count ~ LibraryLayout  +  condition)

 (iii)  Test for differential expression in the GLM setting by fitting both a full model and reduced model (i.e., with the factor 
of interest taken out):

 >  fit1  =  fitNbinomGLMs(cds, count ~ LibraryLayout  +  condition)

 >  fit0  =  fitNbinomGLMs(cds, count ~ LibraryLayout)

 (iv) By using the two fitted models, compute likelihood ratio statistics and associated P values, as follows:

 >  pval  =  nbinomGLMTest(fit1, fit0)

 (v) Adjust the reported P values for multiple testing:

 >  padj  =  p.adjust(pval, method = "BH")

 (vi)  Assemble a result table from full model fit and the raw and adjusted P values and print the first few upregulated and 
downregulated genes (FDR  < 10%):

 >  res  =  cbind(fit1, pval = pval, padj = padj)

 >  resSig  =  res[which(res$padj  <  0.1),]

 >  head( resSig[ order(resSig$conditionKD, decreasing = TRUE), ] )

R output:

  (Intercept) LibraryLayoutSINGLE conditionKD  deviance  converged pval  padj

FBgn0013696 -70.96  36.829  37.48  5.79e-10  TRUE  3.52e-03  5.51e-02

FBgn0085822 -5.95  4.382  5.14  2.07e + 00  TRUE  4.72e-03  7.07e-02

FBgn0085827 -3.96  4.779  5.08  2.89e + 00  TRUE  5.60e-03  8.05e-02

FBgn0264344 -2.59  2.506  4.26  6.13e-01  TRUE  3.86e-04  9.17e-03

FBgn0261673 3.53  0.133  3.37  1.39e + 00  TRUE  0.00e + 00 0.00e + 00

FBgn0033065 2.85  -0.421  3.03  4.07e + 00  TRUE  8.66e-15  1.53e-12

 >  head( resSig[ order(resSig$conditionKD, decreasing = FALSE), ] )

Figure 7 | Histogram of P values from gene-by-gene statistical tests.
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R output:

  (Intercept) LibraryLayoutSINGLE  conditionKD deviance converged pval  padj

FBgn0031923 1.01  1.2985  -32.26  1.30  TRUE  0.00528 0.077

FBgn0085359 6.37  0.5782  -4.62  3.32  TRUE  0.00000 0.000

FBgn0039155 10.16  0.0348  -4.62  3.39  TRUE  0.00000 0.000

FBgn0024288 6.71  -0.4840  -4.55  1.98  TRUE  0.00000 0.000

FBgn0039827 8.79  -0.2272  -4.06  2.87  TRUE  0.00000 0.000

FBgn0034736 8.54  -0.3123  -3.57  2.09  TRUE  0.00000 0.000

 (vii) Follow Step 14C(xi–xiii).

15| As another spot check, point the IGV genome browser (with GTF and BAM files loaded) to a handful of the top differen-
tially expressed genes and confirm that the counting and differential expression statistics are appropriately represented.

? trouBlesHootInG
Troubleshooting advice can be found in table 1.

● tIMInG
Running this protocol on the SRA-downloaded data will take  <10 h on a machine with eight cores and 8 GB of RAM;  
with a machine with more cores, mapping of different samples can be run simultaneously. The time is largely spent on  
quality checks of reads, read alignment and feature counting; computation time for the differential expression analysis is 
comparatively smaller.
Step 1, sequence quality checks: ~2 h
Steps 3–6, organizing metadata:  <1 h
Steps 7 and 8, read alignment: ~45 min per sample
Step 9, organize, sort and index the BAM files and create SAM files: ~1 h
Steps 10–12, inspect alignments with IGV:  <20 min
Step 13, feature counting: ~3 h
Step 14, differential analysis: variable; computational time is often <20 min
Step 15, additional spot checks: <20 min

taBle 1 | Troubleshooting table.

step problem possible reason solution

1, 14A(i), 
14C(ii)

An error occurs when loading 
a Bioconductor package

Version mismatch Make sure the most recent version of R is installed;  
reinstall packages using biocLite

7, 8 An error occurs while map-
ping reads to reference 
genome

Wrong files made available  
or version mismatch

Carefully check the command submitted, the documentation 
for the aligner and the setup steps (e.g., building an index); 
check that there is no clash between bowtie and bowtie2

13 An error occurs counting 
features

GTF format violation Use an Ensembl GTF format or coerce your file into a  
compatible format. In particular, verify that each line of  
type exon contains attributes named gene_id and  
transcript_id, and ensure that their values are correct

14 Errors in fitting  
statistical models or  
running statistical tests

Wrong inputs, outdated  
version of software

Ensure versions of R and Bioconductor packages are up to  
date and check the command issued; if a command is correct 
but an error persists, post a message to the Bioconductor  
mailing list (http://bioconductor.org/help/mailing-list/) 
according to the posting guide (http://bioconductor.org/help/
mailing-list/posting-guide/)

http://bioconductor.org/help/mailing-list/
http://bioconductor.org/help/mailing-list/posting-guide/
http://bioconductor.org/help/mailing-list/posting-guide/
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antIcIpateD results
sequencing quality checks
Step 1 results in an HTML report for all included FASTQ files. Users should inspect these (Step 2) and look for persistence 
of low-quality scores, over-representation of adapter sequence and other potential problems. From these inspections, users 
may choose to remove low-quality samples, trim ends of reads (e.g., using FASTX; http://hannonlab.cshl.edu/fastx_toolkit/) 
or modify alignment parameters. Note that a popular non-Bioconductor alternative for sequencing quality checks is FastQC 
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/).

Feature counting
In Step 13, we used htseq-count for feature counting. The output is a COUNT file (two columns: identifier, count) for each 
sample. Many alternatives exist inside and outside of Bioconductor to arrive at a table of counts given BAM (or SAM) files 
and a set of features (e.g., from a GTF file); see Box 3 for further considerations. Each cell in the count table will be an  
integer that indicates how many reads in the sample overlap with the respective feature. Non-informative rows, such as features 
that are not of interest or those that have low overall counts, can be filtered. We recommend removing rows with a low  
overall sum of counts (or low CPM), as this generally increases the statistical power of the differential expression analysis55.

normalization
As different libraries will be sequenced to different depths, offsets are built in the statistical model to ensure that parameters 
are comparable. The term normalization is often used for that, but it should be noted that the raw read counts are not actually 
altered56. By default, edgeR uses the number of mapped reads (i.e., count table column sums) and estimates an additional 
normalization factor to account for sample-specific effects (e.g., diversity)56; these two factors are combined and used as an 
offset in the NB model. Analogously, DESeq defines a virtual reference sample by taking the median of each gene’s values across 
samples and then computes size factors as the median of ratios of each sample to the reference sample. Generally, the ratios of 
the size factors should roughly match the ratios of the library sizes. Dividing each column of the count table by the correspond-
ing size factor yields normalized count values, which can be scaled to give a counts per million interpretation (see also edgeR’s 
cpm function). From an M (log ratio) versus A (log expression strength) plot, count data sets typically show a (left-facing)  
trombone shape, reflecting the higher variability of log ratios at lower counts (Fig. 6). In addition, points will typically be 
centered around a log ratio of 0 if the normalization factors are calculated appropriately, although this is just a general guide.

sample relations
The quality of the sequencing reactions (Step 1) themselves is only a part of the quality assessment procedure. In Steps 
14A(vi) or 14C(v), a ‘fitness for use’57 check is performed (relative to the biological question of interest) on the count data 
before statistical modeling. edgeR adopts a straightforward approach that compares the relationship between all pairs of 
samples, using a count-specific pairwise distance measure (i.e., biological coefficient of variation) and an MDS plot for 
visualization (Fig. 4a). Analogously, DESeq performs a variance-stabilizing transformation and explores sample relationships 
using a PCA plot (Fig. 4b). In either case, the analysis for the current data set highlights that library type (single-end or 
paired-end) has a systematic effect on the read counts and provides an example of a data-driven modeling decision: here, a 
GLM-based analysis that accounts for the (assumed linear) effect of library type jointly with the biological factor of interest 
(i.e., knockdown versus control) is recommended. In general, users should be conscious that the degree of variability  
between the biological replicates (e.g., in an MDS or PCA plot) will ultimately effect the calling of differential expression. 
For example, a single outlying sample may drive increased dispersion estimates and compromise the discovery of  
differentially expressed features. No general prescription is available for when and whether to delete outlying samples.

Dispersion estimation
As mentioned above, getting good estimates of the dispersion parameter is critical to the inference of differential expression. 
For simple designs, edgeR uses the quantile-adjusted conditional maximum (weighted) likelihood estimator4,5, whereas DESeq 
uses a method-of-moments estimator3. For complex designs, the dispersion estimates are made relative to the design ma-
trix, using the CR-adjusted likelihood7,53; both DESeq and edgeR use this estimator. edgeR’s estimates are always moderated 
toward a common trend, whereas DESeq chooses the maximum of the individual estimate and a smooth fit (dispersion versus 
mean) over all genes. A wide range of dispersion-mean relationships exist in RNA-seq data, as viewed by edgeR’s plotBCV or 
DESeq’s plotDispEsts; case studies with further details are presented in both edgeR’s and DESeq’s user guides.

Differential expression analysis
DESeq and edgeR differ slightly in the format of results outputted, but each contains columns for log-fold change (log), 
counts per million (or mean by condition), likelihood ratio statistic (for GLM-based analyses), as well as raw and adjusted  

http://hannonlab.cshl.edu/fastx_toolkit/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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P values. By default, P values are adjusted for multiple testing using the Benjamini-Hochberg58 procedure. If users enter 
tabular information to accompany the set of features (e.g., annotation information), edgeR has a facility to carry  
feature-level information into the results table.

post-differential analysis sanity checks
Figure 7 (Step 14C(xiii)) shows the typical features of a P value histogram resulting from a good data set: a sharp peak at 
the left side, containing genes with strong differential expression, a ‘floor’ of values that are approximately uniform in the 
interval [0, 1], corresponding to genes that are not differentially expressed (for which the null hypothesis is true),  
and a peak at the upper end at 1, resulting from discreteness of the NB test for genes with overall low counts. The latter 
component is often less pronounced, or even absent, when the likelihood ratio test is used. In addition, users should spot 
check genes called as differentially expressed by loading the sorted BAM files into a genome browser.

Note: Supplementary information is available in the online version of the paper.
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