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Abstract Measures of RNA abundance are important for

many areas of biology and often obtained from high-

throughput RNA sequencing methods such as Illumina

sequence data. These measures need to be normalized to

remove technical biases inherent in the sequencing

approach, most notably the length of the RNA species and

the sequencing depth of a sample. These biases are cor-

rected in the widely used reads per kilobase per million

reads (RPKM) measure. Here, we argue that the intended

meaning of RPKM is a measure of relative molar RNA

concentration (rmc) and show that for each set of tran-

scripts the average rmc is a constant, namely the inverse of

the number of transcripts mapped. Further, we show that

RPKM does not respect this invariance property and thus

cannot be an accurate measure of rmc. We propose a slight

modification of RPKM that eliminates this inconsistency

and call it TPM for transcripts per million. TPM respects

the average invariance and eliminates statistical biases

inherent in the RPKM measure.

Keywords RNA quantification � NextGen sequencing �
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Introduction

Measuring and comparing transcript abundance are critical for

the study of gene regulation, assessing the effect of experi-

mental treatments on gene expression, and the evolution of

gene regulation. Ideally, measurements of gene expression

would directly estimate the concentration of different RNA

species at the site of their biological function, i.e., their

availability at ribosomes or other locations in the cell. Mea-

suring mRNA abundance at their site of biological function

would require not only measurement of mRNA amounts but

also cell number, cell volume and sub-cellular localization. In

most cases, we have access to various measures of RNA

abundance but little or no information about the other vari-

ables. In the absence of information on cell number, volume

and sub-cellular localization, the most we can hope for is a

consistent measurement of the relative molar concentration

(rmc) of each mRNA species. The rmc of a gene g is

rmcg ¼
½mRNAg�
½mRNAtotal�

½mRNAtotal� ¼
X

g2G

½mRNAg�

where G stands for the set of all genes determined in that

experiment and g is an index for a gene. Since this measure

is a ratio of two concentrations the denominator of the

concentration measure cancels, and information about cell

number or cell volume becomes irrelevant.

All commonly used techniques to measure mRNA abun-

dance, including qPCR, microarray signals, as well as reads

per kilobase per million reads (RPKM) for RNAseq data

(Mortazavi et al. 2008), aim at estimating a statistic that is as

closely proportional to the relative molar concentration as pos-

sible. Here, we discuss estimating rmc from mRNA-seq data.
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An invariance property of rmc measures

A useful property of rmc is that, within each sample, the

average of rmc across genes, hrmciG, is a constant that only

depends on the number transcript types determined, i.e., the

number of genes mapped in a mRNA-seq data set. This can

easily be seen from the definition of average rmc

hrmciG ¼
1

k G k
X

g2G

rmcg ¼
1

k G k
X

g2G

½mRNAg�
½mRNAtotal�

¼ 1

k G k

P
g2G ½mRNAg�
½mRNAtotal�

¼ 1

k G k

or if we set k G k¼ N, we obtain

hrmciG ¼
1

N

This means that the average rmc for each and every

sample of RNA-seq data mapped to the same genome is the

same constant value.

The mathematical constraint on rmc shown above

implies a similar constraint for any statistic S that is meant

to estimate a value proportional to rmc. Specifically, if we

assume that S is proportional to rmc, i.e., there exists a

positive non-zero number k such that S = k*rmc, then it is

easy to see that the average statistic has to be

hSiG ¼
k

N

for each and every sample mapped to the same genome. We

can use the equation above to test candidate rmc measures

for their consistency across samples. Only a statistic that

meets that criterion can be a legitimate estimate of rmc.

RPKM as a measure of rmc

The most frequently used measure of mRNA abundance

based on RNA-seq data is RPKM. It is calculated from the

number of reads mapped to a particular gene region g, rg,

and the feature length, flg, which is the number of nucle-

otide in a mapable region of a gene (Mortazavi et al. 2008).

It is calculated as

RPKMg ¼
rg � 109

flg � R

where R is the total number of reads from the sequencing run

of that sample, R ¼
P

g2G rg. RPKM accommodates two

biases that the number of reads mapped for each gene rg

introduces compared to the actual transcript abundance. At

the one hand, differences in the feature length lead to

different expected read counts from Illumina sequencing

runs, even for genes with the same transcript abundance. One

expects more reads to be produced from longer transcripts

because the transcripts are transcribed to cDNA and then

broken into smaller pieces accessible to sequencing. This

normalization is achieved by dividing the number of reads by

the feature length and multiplying them with 1,000:

rg

flg
103

Another factor that influences the number of reads

obtained for each gene is the sequencing depth, i.e., the

total number of reads obtained in one sequencing run. Even

when the transcript abundance is the same in two samples

for the same gene one expects more reads from the sample

that has been sequenced to greater depth. To accommodate

this bias, the RPKM measure normalizes by the total

number of reads R, divided by 106, to obtain reads for each

gene per million reads,

R

106

leading to the canonical formula for RPKM

RPKMg ¼
rg103

flg

R
106

¼ rg � 109

flg � R

Table 1 summarizes the average RPKM values from a

number of RNA-seq data for cultured human cell lines from

our lab. As can be seen from this data, the average RPKM is

similar among technical replicates from the same sample but

substantially different among samples (F ratio = 119.61;

df = 4 and 5, p = 3.77 9 10-5). Note that these samples

have all been mapped to the same version of the human

genome (hg18, canonical) and thus the differences cannot be

explained by different gene sets used for the mapping of the

sequence reads. The variation of average RPKM among

samples raises doubt about the appropriateness of RPKM as

a measure of relative molar RNA concentration.

The reason for the inconsistency of RPKM across samples

arises from the normalization by the total number of reads.

While rmc as well as qPCR results are ratios of transcript

concentrations, the RPKM normalizes a proxy for transcript

number by rg 9 103/flg the number of sequencing reads in

millions, R/106. The latter, however, is not a measure of total

transcript number. The relationship between R and the total

number of transcripts sampled depends on the size distribu-

tion of RNA transcripts, which can differ between samples.

In a sample with, on average, longer transcripts the same

number of reads represents fewer transcripts.

Transcripts per million (TPM): an alternative

to RPKM

Here a slightly modified measure of transcript abundance is

introduced, the TPM. TPM is calculated as
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TPM ¼ rg � rl� 106

flg � T

T ¼
X

g2G

rg � rl

flg

where rl is the read length, i.e., the average number of

nucleotides mapped per read. The rationale for this

calculations is the following. The value

rg � rl

flg

is a proxy for the number of transcript samples by rg

sequencing reads. This is a simplification, which will be

discussed separately below. This value is the number of

mapped read divided by the length of the transcript. T is the

total number of transcripts sampled in a sequencing run. It

is easy to see that TPM fulfills the invariant average

criterion:

hTPMig ¼
106

N

and thus can be proportional to the average rmc. Table 1

shows that the average TPM is in fact invariant among

samples, as is necessary for mathematical reasons.

Within one sample TPM and RPKM are proportional.

This is seen in Fig. 1 for RNA from human chondrocyte.

The proportionality between TPM and RPKM for a given

sample can also be deduced from the equations defining

RPKM and TPM:

RPKMg ¼
T � 103

R� rl
� TPMg

Note that the proportionality coefficient only contains

values constant among genes for the same sample, T, R, rl.

However, the scaling factor between RPKM and TPM

differs between samples (Table 1) (see supplemental

material for details about the data acquisition and for the

chicken data see (Wang et al. 2011)). Among our collection

of five different sample types (cell types or different stages

of differentiation) the scaling factor varies between 2.6 and

3, and thus the difference of between samples can be as

Table 1 Comparison of average TPM and RPKM among different cells types and samples (see supplementary material and Wang et al. 2011)

Species Tissue/cell type Replicate AvTPM AvRPKM Scaling f

Human Differentiated decidual cells 1 46.518 15.94 2.92

2 46.518 16.13 2.83

Human Un-differentiated dec. cells 1 46.518 15.27 3.05

2 46.518 15.22 3.06

Human Myofibroblast cells 1 46.518 17.66 2.62

2 46.518 17.65 2.62

Human Chondrocyte cells 1 46.518 16.57 2.81

2 46.518 16.57 2.81

Human Myometrial cells 1 46.518 17.77 2.62

2 46.518 17.79 2.61

Chicken Forelimb digit 1 stage 28–29 – 65.527 28.35 2.31

Chicken Forelimb digit 1 stage 31 – 65.527 28.56 2.29

If a measure of RNA abundance is proportional to rmc, then their average should be the same for all samples since all these samples are from the

same species, human, and the RNA sequence reads were mapped to the same genome. Note that the average TPM is in fact identical among the

human samples but different from the chicken sample as expected. In contrast, the average RPKM varies among samples even for the same

genome, i.e., the different human cell types. The ANOVA for AvRPKM among human samples is highly significant with an F(4,5) = 119.6 and

p = 3.78 9 10-5. The degree of difference can be seen in the scaling factors f, which is the factor that converts corresponding RPKM into TPM

values. Note that within a sample the RPKM and the TPM are proportional, and the scaling factor f is the coefficient of proportionality. The

higher average TPM and RPKM values from the chicken samples are due to the differences in genome annotation in the chicken versus the

human genome. The lower number of annotated genes in the chicken genome leads to higher average TPM/RPKM

Fig. 1 Relationship between RPKM and TPM in data from RNA

abundance in cultured human chondrocytes (ATCC, Cat. No. CRL-

2847). RPKM and TPM are proportional to each other within a given

sample, but see Table 1 for variation between samples
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much as much as 14 %. This means that a gene which may

have the same gene expression level in terms of rmc could

differ by as much as 14 % in terms of RPKM and thus

could suggest differences where there are none. Or the gene

expression level in terms of RPKM could suggest no

difference, even though there are differences in transcript

abundance.

The above described differences among samples in the

proportionality of TPM and RPKM suggest that between

sample comparisons would lead, on average, to inflated

statistical significance or lower p values than is justified by

differences of transcript abundance. In Fig. 2 the p values

for a comparison of RNA abundance in two cell types are

plotted. For each gene, the p value was estimated from a

t test, using the two replicates for estimating variance. As

can be seen, the number of low p values is higher if the

comparison is done in terms of RPKM compared to when

TPM values are used. This is expected if RPKM causes

artifactual differences in the mean as suggested by the

differences in the proportionality between TPM and RPKM

between different samples.

Remark about estimating alternative transcript

abundance

Both, TPM as well as RPKM, rely on feature length to

correct read numbers for differences in transcript size.

Often, feature length is estimated as the total length of the

exonic region. However, there is a well-recognized prob-

lem with this approach, because cell types can differ in the

splicing variant of the transcript they express (Stamm et al.

2005). There are various approaches to solve that problem

(Jiang and Wong 2009; Wang et al. 2009; Ozsolak and

Milos 2011). These either require pre-processing of the

RNA sample to focus only on sequences from the tran-

scriptional start site, or prior knowledge of all possible

splice variants. At this time, knowledge of splice variants

can only be approximate, since there is no guarantee that

all possible splice variants have been described, in partic-

ular for a specific cell or tissue type. Here, we suggest an

alternative approach that relies on post hoc validation

rather than a priori transcript modeling.

One could proceed by mapping genes and quantifying

RNA transcript abundance in one of the acceptable ways,

say with TPM and test for differences between samples or

treatments. If a significant difference is found, the differ-

ence can have two reasons. At the one hand, the actual

transcript abundance can be different between the samples,

or, on the other hand, the same level of transcript abun-

dance for the gene exists, but the two samples contain

different splice variants of substantially different length.

The sample with the smaller transcript is expected to lead

to lower estimates of the transcript abundance.

To validate a suspected difference in RNA abundance

based on TPM one can test the inference by comparing the

read coverage of the gene in the two samples. If the TPM

difference between samples is, at least partially, due to the

expression of different splice variants, one expects that the

sequencing coverage of the coding region differs between

the samples. If there is no significant difference in

sequence coverage it is likely that the detected TPM dif-

ference in fact reflects a difference in RNA transcript

expression. If there are differences in read overage, special

procedures need to be developed to assess how much of the

difference is due to differential splicing. Exactly how read

distribution across a transcript is to be compared between

samples needs to be worked out.

Conclusions

Here, we argue that the intended meaning of many RNA

abundance measures, in particular RPKM, is to measure

the relative molar concentration of a RNA species. We

presented evidence that RPKM is an inconsistent measure

of relative molar concentration and suggests a closely

related alternative, TPM, which is not biased in the way

RPKM is. We show that the RPKM measures can differ

substantially between samples and thus has the potential to

cause inflated statistical significance values. At a concep-

tual level the problem with RPKM can be traced back to an

issue of meaningfulness (Narens 2002; Houle et al. 2011).

In measurement theory, the notion of meaningfulness is the

question what the physical or biological interpretation of

the numerical measure is. In the case of RPKM, the

problem originates from the fact that there is no biological

Fig. 2 p value distribution of RNA abundance data from human

chondrocytes and myometrial cells for data expressed in RPKM and

TPM. The p values were calculating from two-tailed t test assuming

different variances. The p values are binned in 0.05 bins. Note that

t tests using RPKM lead to higher number of low p values as expected

if RPKM introduces artifactual differences in RNA abundance

measures between samples
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interpretation of the denominator R, the total number of

reads. It is a variable that characterizes a particular

sequencing run, but does not correspond in any direct way

to a biological variable, like the total RNA abundance. In

other words, the units of RNA abundance in terms of

RPKM differ between samples, i.e. it behaves like a

‘‘rubber measuring tape.’’ Hence, the inconsistencies

highlighted here can be traced back to insufficient attention

to issues of meaningfulness of quantitative measures fre-

quently found in biology (Houle et al. 2011).

References

Houle D, Pelabon C, Wagner GP, Hansen TF (2011) Measurement

and meaning in biology. Q Rev Biol 86:3–34

Jiang H, Wong WH (2009) Statistical inferences for isoform

expression in RNA-seq. Bioinformatics 25:1026–1032

Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008)

Mapping and quantifying mammalian transcriptomes by RNA-

seq. Nat Methods 5:621–628

Narens L (2002) Theories of meaningfulness. Lawrence Erlbaum

Associates, Mahwah

Ozsolak F, Milos PM (2011) RNA sequencing: advances, challenges

and opportunities. Nat Rev Genet 12:87–98

Stamm S, Ben-Ari S, Rafalska I, Tang Y, Zhang Z, Toiber D,

Thanaraj TA, Soreq H (2005) Function of alternative splicing.

Gene 344:1–20

Wang Z, Gerstein M, Snyder M (2009) RNA-seq: a revolutionary tool

for transcriptomics. Nat Rev Genet 10:57–63

Wang Z, Young RL, Xue H, Wagner GP (2011) Transcriptomic

analysis of avian digits reveals conserved and derived digit

identities in birds. Nature 477:583–586

Theory Biosci. (2012) 131:281–285 285

123


	Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples
	Abstract
	Introduction
	An invariance property of rmc measures
	RPKM as a measure of rmc
	Transcripts per million (TPM): an alternative to RPKM
	Remark about estimating alternative transcript abundance
	Conclusions
	References


