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differential analysis of 
rna-seq incorporating 
quantification uncertainty
Harold Pimentel1, Nicolas L Bray2, Suzette Puente3, 
Páll Melsted4 & Lior Pachter5

We describe sleuth (http://pachterlab.github.io/sleuth),  
a method for the differential analysis of gene expression data 
that utilizes bootstrapping in conjunction with response error 
linear modeling to decouple biological variance from inferential 
variance. sleuth is implemented in an interactive shiny app 
that utilizes kallisto quantifications and bootstraps for fast and 
accurate analysis of data from rna-seq experiments.

Many methods have been developed for differential analysis of 
RNA-seq data1. Some of these methods are designed to translate 
models developed for microarray analysis2, while others are based 
on models tailored to RNA-seq1,3–5. Differential analysis of RNA-
seq experiments requires careful assessment of gene expression 
variability from a few replicate samples to identify biologically 
relevant expression differences between conditions6. There is 
ongoing debate on even basic questions such as how to measure 
gene abundances1, whether there is sufficient power to test for 
differences in abundance of individual isoforms7, and how to best 
utilize biological replicates1. Part of the reason for this uncertainty 
is the lack of agreed-upon standards for testing and benchmark-
ing RNA-seq methods. In most cases, accuracy claims are based 
on simulations of read counts from distributions assumed in the 
models, rather than on simulations of raw reads2,5,6,8,9. Such read-
count-based simulations typically discount the effects of ambigu-
ously mapping reads and fail to capture both the possibilities for 
and challenges of isoform-specific differential analysis.

Here we describe a novel approach to RNA-seq differential 
analysis and a comprehensive benchmarking framework with 
broader scale and scope than have previously been published. 
Our approach is implemented along with interactive visualization 
software that provides crucial transparency in assessing results, 
and it offers users a convenient tool for exploratory data analysis.  
Throughout the paper we use the name ‘sleuth’ to refer to both 
our statistical method and the software application.

sleuth relies on variance decomposition to identify biologi-
cal differences in transcript or gene expression (Fig. 1). While  

using a standard strategy of shrinkage to stabilize variance 
estimates from few samples2,6, sleuth is able to leverage recent 
advances in quantification10 to obtain error estimates that can 
be used to decouple biological variance from inferential vari-
ance before shrinkage (Fig. 1a). Variance decomposition is 
important because of the diversity of variance estimates across 
genes that arise when quantifying abundances. In one example  
(Fig. 1b,c), DESeq2 and voom were run on the same data with 
featureCounts summaries, and these tools identified a gene  
as differentially expressed at a false discovery rate (FDR) thresh-
old of 0.10 (reported FDR 8.81 × 10−21 and 5.56 × 10−10, respec-
tively); whereas sleuth did not find differences between conditions  
to be significant (reported FDR 0.156) because of the high infer-
ential variance. Some methods have attempted to utilize estimates 
of quantification errors6,11,12, but these methods are limited  
by long run times and lack of robustness to ambiguously  
mapping reads. By leveraging kallisto’s10 rapid quantification 
and variance estimation, sleuth overcomes these issues and  
provides a statistically rigorous, flexible, and efficient tool for 
RNA-seq analysis.

To test its performance, we compared sleuth with other widely 
used methods on both simulated and biological data. Our simu-
lation was based on two experimental conditions with three 
replicates each (see Online Methods). We simulated biological 
variance (dispersion) according to the negative binomial count 
model used by DESeq2 (ref. 9). To accurately assess perform-
ance, each simulation was repeated 20 times. All programs except 
sleuth used quantifications inferred from genome alignments (see 
Online Methods). Full details of the simulation experiments are 
in Supplementary Note 1.

sleuth displayed higher sensitivity than Cuffdiff 2 (ref. 12), 
DESeq6, DESeq2 (ref. 9), EBSeq7, edgeR8, voom2; and sleuth dis-
played log-fold change13 in the FDR range of usual interest (0–10%)  
and beyond, up to FDR 0.3 (Fig. 2; Supplementary Figs. 1 and 2; 
and Supplementary Note 1). As expected, our simulations found 
that DESeq2 has more power than DESeq at all relevant FDRs, and 
that the naïve ranking of genes by log-fold change produces poor 
results. To control for the effect of different filtering strategies, we 
ran all programs on a common filtered set of genes and showed 
that sleuth maintains its sensitivity advantage (Supplementary 
Note 1). Finally, to show the benefit of directly estimating infer-
ential variance, we also demonstrated that sleuth outperforms 
models in which inferential variance is assumed to be Poisson or 
zero (Supplementary Note 1).

Since FDR control is fundamental for identifying differentially 
expressed genes in experiments with few replicates, we carefully 
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examined the accuracy with which methods self-report their 
FDR. Other than sleuth and voom, all methods underestimated 
their FDR; several methods reported an FDR of 0.01, when the 
true FDR was greater than 0.1. While sleuth overestimates the 
FDR, this error is conservative; i.e., fewer genes are reported, yet 
they are highly enriched for being differentially expressed.

To test the accuracy of FDR estimation on biological data,  
we repeated an experiment from the DESeq2 paper9 (see  
Online Methods). Using the Bottomly data set14, which contains 
more than ten replicates from two mice strains, we randomly 
selected two sets of three samples (in sets of 20 replicates) and 
used differential expression results from the remaining samples 
as the ‘truth’ while ensuring that batch types were equally repre-
sented across replicates. Each method was tested to see how well 
it could (i) recapitulate its own results using a smaller data set and 
(ii) control the FDR, as assessed by comparing to its own results 
in the remaining high-replicate samples. As in the simulation, 
sleuth and voom demonstrate a superior ability to estimate their 
FDR accurately (Fig. 3a).

Using our simulated data, we also performed a consistency 
experiment from the DESeq2 paper9 to test whether methods 
produce similar results with less data. Results from simulated data 
recapitulate the results from biological data, thus validating the 
reliability of the consistency experiment (Fig. 3b).

Additionally, we performed a negative-control experiment 
comparing two groups of randomly selected female Finnish sam-
ples from the GEUVADIS data set15, for which no biologically 
meaningful differential expression is expected between groups. 
sleuth and voom found very few false positives, whereas other 
methods generated many (sleuth and voom are the only methods 
with a median of less than 5 false positives at all FDR ranges tested 
at both the gene and isoform level, whereas the next best method 
has 95; Supplementary Figs. 3 and 4).

While RNA-seq is standard for gene-level differential analysis, 
there has been debate about its suitability and power at the isoform 
level. We and others previously demonstrated that isoform-level 
differential analysis can highlight interesting differential splicing 
and promoter usage12, but the significance and reliability of such 
results have been contested13.

To examine the power and accuracy of isoform-level differen-
tial analysis, we repeated the gene-level analysis at the transcript 
level (Fig. 2b) using kallisto quantifications as the input for each 
program. We confirm previous findings that the increased testing 
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figure 2 | Sensitivity and false discovery rates of differential expression methods. (a,b) Sensitivity versus FDR curve for each program on simulated data 
(‘effect from experiment’ simulation; see Online Methods), showing the ranking of all genes (a) or transcripts (b) passing its filter. Circles, triangles and 
squares represent rankings at an FDR of 0.01, 0.05, and 0.10, respectively. Ideally, each symbol would lie directly above the corresponding symbol on the 
x-axis indicating true FDR. Error bars, 2 s.d. (n = 20). Each isoline represents an indicated number of genes (or transcripts) that are called differentially 
expressed; intersection with a curve indicates a program’s performance when looking at that number of top-ranked genes. FDR lines were averaged over 
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0.0

0.5

1.0

Raw sleuth

Estimation method

V
ar

ia
nc

e

Biological

Inferential
Dt ~ N (x�t, (�t

2 + �t
2)In)

0

1

2

3

E
N

S
G

00
00

01
52

25
3

sc
al

ed
 r

ea
ds

 p
er

 b
as

e

Raw variance

Inferential
variance

Smooth biol. var.

a

b c

SRR49
33

71

HOXA1K
D

SRR49
33

69

HOXA1K
D

SRR49
33

68

sc
ra

m
ble

SRR49
33

66

sc
ra

m
ble

SRR49
33

67

sc
ra

m
ble

SRR49
33

70

HOXA1K
D

figure 1 | Overview of sleuth. (a) sleuth models different sources 
of variance to predict differentially expressed transcripts and genes. 
Biological variance (biol. var.) results from differences in RNA content 
between replicates and from stochastic biochemistry during library 
preparation, while inferential variance arises from random sequencing 
and computational analysis of reads. See Online Methods for description 
of terms. (b) Results for an example gene after running kallisto on RNA-
seq data from Trapnell et al.12 generated from human lung fibroblasts 
transfected with scrambled siRNA (scramble condition) and HOXA1 
siRNA (HOXA1KD condition). DESeq2 and voom identify the gene as 
differentially expressed, but high inferential variance causes sleuth 
to find no difference. Red dots, point estimates. Blue dots, results for 
bootstrap samples to assess inferential variance. (c) The between-sample 
raw variance leads to a small estimated biological variance that fails to 
account for uncertainty introduced when quantifying the samples.
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required for isoform-level analysis decreases sensitivity in com-
parison to that of gene-level analysis. However, we find that sleuth 
can still control the FDR at the isoform level while calling many 
differentially expressed isoforms. Interestingly, while the power to 
discover differentially expressed features is lower, our simulations 
show that, at a given FDR, the total number of differential features 
detected is fairly similar to that when performing gene-level anal-
ysis (see isolines in Fig. 2; Supplementary Note 1). Moreover, for 
simulations in which isoform abundances change independently 
between conditions, we find that sleuth outperforms other meth-
ods. The same is also true for the correlated-effect simulation (see 
Online Methods, Supplementary Note 1). In addition, we tested 
BitSeq5 on a single sample, as its run time was prohibitive on the 
entire simulation set. We found BitSeq performed well overall, 
although sleuth outperformed BitSeq when the true FDR was 
less than 0.12 (Supplementary Note 1). To demonstrate that the 
improvement of sleuth’s performance arises from its model rather 
than from its use of kallisto’s quantifications, we ran sleuth for one 
replicate of our simulation using RSEM quantifications for the 
original data along with manually performed bootstraps, and we 
saw almost identical performance (Supplementary Figs. 5 and 6). 

We also used tximport16 to test the result of using kallisto quan-
tifications to estimate gene abundances for differential analysis 
with other programs, and we found that sleuth remained superior 
to other methods (Supplementary Figs. 7 and 8).

Our results show that by accounting for uncertainty in quan-
tifications, sleuth is more accurate than previous approaches 
at both the gene and isoform levels. Crucially, the estimated  
FDRs reported by sleuth are well controlled and reflect the 
true FDRs, making the predictions of sleuth reliable and useful  
in practice.

The sleuth workflow was designed to be simple, interpretable, 
and fast. The model was chosen in part for its tractability, and 
the Shiny visualization framework was chosen for its portability 
(Supplementary Note 2). The modularity of the algorithm also 
makes it easy to explore improvements and extensions, such as 
analysis of more general transcript groups and different shrinkage 
and normalization schemes to improve performance. As a result, 
when coupled with kallisto, which has dramatically reduced run 
times for quantification based on the use of pseudoalignment, 
sleuth is a quick, accurate, and versatile tool for the analysis of 
RNA-seq data.
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figure 3 | Self-consistency of differential expression methods when using less data. (a,b) The estimated versus true FDR for the Bottomly data set14 
and our simulation are shown at the (a) isoform and (b) gene level. “Experiment” refers to the Bottomly data set; “simulation” refers to our simulations 
mimicking the Bottomly resampling experiment. The panels from top to bottom display the true FDR for each program when it estimates the FDR as 0.01, 
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represents the target FDR.
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methods
Methods, including statements of data availability and any associated  
accession codes and references, are available in the online version 
of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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online methods
Model. We consider an additive response error model in which 
the total between-sample variability has two additive components, 
(i) ‘biological variance’ that arises from differences in expression 
between samples as well as from variability due to library prepa-
ration and (ii) ‘inferential variance,’ which includes differences 
arising from computational inference procedures in addition to 
measurement ‘shot noise’ arising from random sequencing of 
fragments. The model is an extension of the general linear model 
where the total error has two additive components. Given a design 
matrix x, we assume a general linear model for the (unknown) 
abundance Yti of transcript t in sample i in terms of fixed-effect 
parameters beta and ‘noise’ epsilon. 

Yti | ( )x xi i
T

t ti= +b e 1

While the Yti are not directly observed, (normal) perturbations 
of Yti constitute the observed random variables Dti: 

Dti | ( )y yti ti ti= + z 2

With some further assumptions, one can derive that the Dti 
values are normally distributed (see Supplementary Note 2) and 
the variance, which is the key to performing differential analysis, 
can be interpreted as the sum of biological (εti) and inferential 
(ξti) variance.

Testing for differential expression. In comparing samples 
to identify differentially expressed genes or transcripts, sleuth 
applies the likelihood ratio test—where the full model contains 
labels for the samples, and the reduced model ignores labels.  
Underlying the test is an estimate of the variances V(Dti), where 
t ranges over the transcripts and i over the samples. The estimate 
for V(Dti) used in sleuth is 

ˆ ( ) max( , ˆ ) ˆ ( )V Dti t t t= +s s t2 2 2 3

where t̂t
2 is the estimate of the inferential variance obtained from boot-

strapping, σ̂t
2 the raw biological variance, and st

2 a shrinkage-based 
estimator of the biological variance. For details of how the individual 
variance estimates were obtained, see Supplementary Note 2.

Simulations. A null distribution for transcript abundances 
was learned from the largest homogeneous population in the 
GEUVADIS data set, 59 samples of lymphoblastoid cell lines 
derived from Finnish females15, a proxy for a homogeneous set of 
samples. We estimated transcript-level abundances with kallisto, 
then we estimated parameters for negative binomial distributions 
(using the Cox–Reid dispersion estimator) to model count distri-
butions using DESeq2.

After the null distribution was constructed, expression fea-
tures (isoforms or genes, depending on the type of simulation) 
were chosen to be differentially expressed. Transcripts with less 
than five estimated counts on average across the GEUVADIS 
samples were marked as too rare to be simulated as differentially 
expressed. A gene was assumed to pass the filter if at least one of 
its constituent transcripts passed the filter. In each simulation, 
20% of the features that passed the filter were chosen to be differ-
entially expressed at random. If the simulation had unequal size 

(1)(1)

(2)(2)

(3)(3)

factors, random size factors were chosen from the set {1/3, 1, 3}  
such that the geometric mean equaled 1, similar to the simula-
tion procedure in DESeq2. However, unlike the DESeq2 simula-
tion procedure, our size factors were chosen at random. Counts 
were generated from the negative binomial distribution, after  
which reads were simulated using the RSEM simulator4. This 
resulted in about 30 million 75-base-pair paired-end reads 
per sample for a total of 13.8 billion reads overall (see tables in 
Supplementary Note 1 for exact counts). Three types of simula-
tions were performed.

Independent effect simulation. Isoforms across the transcrip-
tome were chosen to be differentially expressed at random. The 
simulations were generated with equal size factors. Effect sizes 
were chosen from a truncated normal distribution, such that 
the minimum absolute fold change for differential transcripts or 
genes was 1.5.

Correlated effect simulation. Genes (instead of isoforms) were 
randomly chosen to be differentially expressed. A direction (sign) 
for each effect size was chosen at random, then all the effects 
were simulated from a truncated normal with minimum absolute 
fold change 1.5. The simulation used random unequal size factors 
generated as described above.

Effect from experiment. To mimic the types of changes seen in 
real experiments, fold changes were learned from Trapnell et al.12 
from the set of transcripts that either DESeq2 or sleuth found 
to be differentially expressed at FDR 0.05. Genes were chosen 
at random to be differentially expressed. The null mean counts 
were used to determine the rank of each transcript relative to its 
parent gene. These ranks were matched between the Trapnell data 
set, and the null distribution was learned from the GEUVADIS 
data set.

Self-consistency experiment. In order to validate whether meth-
ods would produce similar results with less data, we performed 
an experiment similar to those of Love et al.9. For each iteration, 
we randomly selected three samples from condition C57BL/6J 
and three samples from condition DBA/2J and ran each tool. 
The ‘truth’ set was established by using the remaining samples 
to identify differentially expressed genes or transcripts using  
that program. For each FDR level (0.01, 0.05, 0.10), we compared 
the results from the smaller data set with those of the larger  
data set for each tool. The FDR was then computed and plotted 
in Figure 3.

Data processing and software notes. Sleuth may be downloaded 
at http://pachterlab.github.io/sleuth. For isoform analyses, all 
quantification was performed using kallisto version 0.42.4. For 
gene-level analyses, HISAT2 was used to align reads to human 
genome GRCh38 and mouse genome GRCm38 for all programs 
other than sleuth (which used kallisto). Quantifications for 
Cuffdiff 2 were performed using Cufflinks. Remaining quantifica-
tions were done using featureCounts. Ensembl release 80 was used 
for human analyses, and release 84 was used for mouse analyses. 
The following R programs were used to compile the results: sleuth 
0.28.1, BitSeq 1.16.0, DESeq 0.24.0, DESeq2 1.12.0, EBSeq 1.12.0, 
edgeR 3.14.0, and limma-voom 3.28.2. When testing programs 
at the isoform level, kallisto 0.42.4 was used to obtain quantifi-
cations. Cuffdiff 2.21 was used with alignments from HISAT2 
2.0.1 (ref. 17). Subread (featureCounts) 1.5.0 (ref. 18) was used 

http://pachterlab.github.io/sleuth
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with alignments from HISAT2 to get raw gene counts. BitSeq was 
provided alignments from Bowtie 1.1.2 (ref. 19). All analyses in 
the paper are fully reproducible through the Snakemake system20, 
available at https://github.com/pachterlab/sleuth_paper_analysis 
and in the Supplementary Software.
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Erratum: Differential analysis of RNA-seq incorporating quantification 
uncertainty
Harold Pimentel, Nicolas L Bray, Suzette Puente, Páll Melsted & Lior Pachter
Nat. Methods 14, 687–690 (2017); published online 5 June 2017; corrected after print 23 August 2017

In the version of this article initially published, the final term in equation (2) in the Online Methods was incorrectly specified as xti. The 
correct term is ti. Also, the two callouts to Supplementary Note 3 in the Online Methods section were incorrect and should have referred 
to Supplementary Note 2. These errors have been corrected in the HTML and PDF versions of the article.
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